Jump to content

SEIF SLAM

From Wikipedia, the free encyclopedia

In robotics, the SEIF SLAM is the use of the sparse extended information filter (SEIF) to solve the simultaneous localization and mapping by maintaining a posterior over the robot pose and the map. Similar to GraphSLAM, the SEIF SLAM solves the SLAM problem fully, but is an online algorithm (GraphSLAM is offline).[1]

References

[edit]
  1. ^ Thrun, S.; Burgard, W.; Fox, D. (2005). Probabilistic Robotics. Cambridge: The MIT Press. ISBN 0-262-20162-3.