In mathematical analysis , the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral
∫
f
d
g
=
∫
f
g
′
d
s
{\displaystyle \int f\,dg=\int fg'\,ds}
for suitable functions
f
{\displaystyle f}
and
g
{\displaystyle g}
. The idea is to replace the derivative
g
′
{\displaystyle g'}
by the difference quotient
g
(
s
+
ε
)
−
g
(
s
)
ε
{\displaystyle g(s+\varepsilon )-g(s) \over \varepsilon }
and to pull the limit out of the integral. In addition one changes the type of convergence.
Definition: A sequence
H
n
{\displaystyle H_{n}}
of stochastic processes converges uniformly on compact sets in probability to a process
H
,
{\displaystyle H,}
H
=
ucp-
lim
n
→
∞
H
n
,
{\displaystyle H={\text{ucp-}}\lim _{n\rightarrow \infty }H_{n},}
if, for every
ε
>
0
{\displaystyle \varepsilon >0}
and
T
>
0
,
{\displaystyle T>0,}
lim
n
→
∞
P
(
sup
0
≤
t
≤
T
|
H
n
(
t
)
−
H
(
t
)
|
>
ε
)
=
0.
{\displaystyle \lim _{n\rightarrow \infty }\mathbb {P} (\sup _{0\leq t\leq T}|H_{n}(t)-H(t)|>\varepsilon )=0.}
One sets:
I
−
(
ε
,
t
,
f
,
d
g
)
=
1
ε
∫
0
t
f
(
s
)
(
g
(
s
+
ε
)
−
g
(
s
)
)
d
s
{\displaystyle I^{-}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s+\varepsilon )-g(s))\,ds}
I
+
(
ε
,
t
,
f
,
d
g
)
=
1
ε
∫
0
t
f
(
s
)
(
g
(
s
)
−
g
(
s
−
ε
)
)
d
s
{\displaystyle I^{+}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s)-g(s-\varepsilon ))\,ds}
and
[
f
,
g
]
ε
(
t
)
=
1
ε
∫
0
t
(
f
(
s
+
ε
)
−
f
(
s
)
)
(
g
(
s
+
ε
)
−
g
(
s
)
)
d
s
.
{\displaystyle [f,g]_{\varepsilon }(t)={1 \over \varepsilon }\int _{0}^{t}(f(s+\varepsilon )-f(s))(g(s+\varepsilon )-g(s))\,ds.}
Definition: The forward integral is defined as the ucp-limit of
I
−
{\displaystyle I^{-}}
:
∫
0
t
f
d
−
g
=
ucp-
lim
ε
→
∞
(
0
?
)
I
−
(
ε
,
t
,
f
,
d
g
)
.
{\displaystyle \int _{0}^{t}fd^{-}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{-}(\varepsilon ,t,f,dg).}
Definition: The backward integral is defined as the ucp-limit of
I
+
{\displaystyle I^{+}}
:
∫
0
t
f
d
+
g
=
ucp-
lim
ε
→
∞
(
0
?
)
I
+
(
ε
,
t
,
f
,
d
g
)
.
{\displaystyle \int _{0}^{t}f\,d^{+}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{+}(\varepsilon ,t,f,dg).}
Definition: The generalized bracket is defined as the ucp-limit of
[
f
,
g
]
ε
{\displaystyle [f,g]_{\varepsilon }}
:
[
f
,
g
]
ε
=
ucp-
lim
ε
→
∞
[
f
,
g
]
ε
(
t
)
.
{\displaystyle [f,g]_{\varepsilon }={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty }[f,g]_{\varepsilon }(t).}
For continuous semimartingales
X
,
Y
{\displaystyle X,Y}
and a càdlàg function H, the Russo–Vallois integral coincidences with the usual Itô integral :
∫
0
t
H
s
d
X
s
=
∫
0
t
H
d
−
X
.
{\displaystyle \int _{0}^{t}H_{s}\,dX_{s}=\int _{0}^{t}H\,d^{-}X.}
In this case the generalised bracket is equal to the classical covariation. In the special case, this means that the process
[
X
]
:=
[
X
,
X
]
{\displaystyle [X]:=[X,X]\,}
is equal to the quadratic variation process .
Also for the Russo-Vallois Integral an Ito formula holds: If
X
{\displaystyle X}
is a continuous semimartingale and
f
∈
C
2
(
R
)
,
{\displaystyle f\in C_{2}(\mathbb {R} ),}
then
f
(
X
t
)
=
f
(
X
0
)
+
∫
0
t
f
′
(
X
s
)
d
X
s
+
1
2
∫
0
t
f
″
(
X
s
)
d
[
X
]
s
.
{\displaystyle f(X_{t})=f(X_{0})+\int _{0}^{t}f'(X_{s})\,dX_{s}+{1 \over 2}\int _{0}^{t}f''(X_{s})\,d[X]_{s}.}
By a duality result of Triebel one can provide optimal classes of Besov spaces , where the Russo–Vallois integral can be defined. The norm in the Besov space
B
p
,
q
λ
(
R
N
)
{\displaystyle B_{p,q}^{\lambda }(\mathbb {R} ^{N})}
is given by
|
|
f
|
|
p
,
q
λ
=
|
|
f
|
|
L
p
+
(
∫
0
∞
1
|
h
|
1
+
λ
q
(
|
|
f
(
x
+
h
)
−
f
(
x
)
|
|
L
p
)
q
d
h
)
1
/
q
{\displaystyle ||f||_{p,q}^{\lambda }=||f||_{L_{p}}+\left(\int _{0}^{\infty }{1 \over |h|^{1+\lambda q}}(||f(x+h)-f(x)||_{L_{p}})^{q}\,dh\right)^{1/q}}
with the well known modification for
q
=
∞
{\displaystyle q=\infty }
. Then the following theorem holds:
Theorem: Suppose
f
∈
B
p
,
q
λ
,
{\displaystyle f\in B_{p,q}^{\lambda },}
g
∈
B
p
′
,
q
′
1
−
λ
,
{\displaystyle g\in B_{p',q'}^{1-\lambda },}
1
/
p
+
1
/
p
′
=
1
and
1
/
q
+
1
/
q
′
=
1.
{\displaystyle 1/p+1/p'=1{\text{ and }}1/q+1/q'=1.}
Then the Russo–Vallois integral
∫
f
d
g
{\displaystyle \int f\,dg}
exists and for some constant
c
{\displaystyle c}
one has
|
∫
f
d
g
|
≤
c
|
|
f
|
|
p
,
q
α
|
|
g
|
|
p
′
,
q
′
1
−
α
.
{\displaystyle \left|\int f\,dg\right|\leq c||f||_{p,q}^{\alpha }||g||_{p',q'}^{1-\alpha }.}
Notice that in this case the Russo–Vallois integral coincides with the Riemann–Stieltjes integral and with the Young integral for functions with finite p-variation .
Russo, Francesco; Vallois, Pierre (1993). "Forward, backward and symmetric integration" . Prob. Th. And Rel. Fields . 97 : 403–421. doi :10.1007/BF01195073 .
Russo, F.; Vallois, P. (1995). "The generalized covariation process and Ito-formula" . Stoch. Proc. And Appl . 59 (1): 81–104. doi :10.1016/0304-4149(95)93237-A .
Zähle, Martina (2002). "Forward Integrals and Stochastic Differential Equations". In: Seminar on Stochastic Analysis, Random Fields and Applications III . Progress in Prob. Vol. 52. Birkhäuser, Basel. pp. 293–302. doi :10.1007/978-3-0348-8209-5_20 . ISBN 978-3-0348-9474-6 .
Adams, Robert A.; Fournier, John J. F. (2003). Sobolev Spaces (second ed.). Elsevier. ISBN 9780080541297 .