Relaxor ferroelectric
Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. As of 2015[update], although they have been studied for over fifty years,[1] the mechanism for this effect is still not completely understood, and is the subject of continuing research.[2][3][4][5]
Examples of relaxor ferroelectrics include:
- lead magnesium niobate (PMN) [6][7][8]
- lead magnesium niobate-lead titanate (PMN-PT) [9]
- lead lanthanum zirconate titanate (PLZT)[10]
- lead scandium niobate (PSN) [11]
- Barium Titanium-Bismuth Zinc Niobium Tantalum (BT-BZNT)[12]
- Barium Titanium-Barium Strontium Titanium (BT-BST) [13]
Applications
[edit]Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage.[10] Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range.[12]
References
[edit]- ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31. Bibcode:2006JMatS..41...31B. doi:10.1007/s10853-005-5915-7. S2CID 189842194.
- ^ Takenaka, H.; Grinberg, I.; Rappe, A. M. (2013). "Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric". Physical Review Letters. 110 (14): 147602. arXiv:1212.0867. Bibcode:2013PhRvL.110n7602T. doi:10.1103/PhysRevLett.110.147602. PMID 25167037. S2CID 9758988.
- ^ Ganesh, P.; Cockayne, E.; Ahart, M.; Cohen, R. E.; Burton, B.; Hemley, Russell J.; Ren, Yang; Yang, Wenge; Ye, Z.-G. (2010-04-05). "Origin of diffuse scattering in relaxor ferroelectrics". Physical Review B. 81 (14): 144102. arXiv:0908.2373. Bibcode:2010PhRvB..81n4102G. doi:10.1103/PhysRevB.81.144102. S2CID 119279021.
- ^ Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang (2014). "Role of random electric fields in relaxors". Proceedings of the National Academy of Sciences. 111 (5): 1754–1759. arXiv:1405.2306. Bibcode:2014PNAS..111.1754P. doi:10.1073/pnas.1314780111. ISSN 0027-8424. PMC 3918832. PMID 24449912.
- ^ Hitchings, Thomas J.; Wickens, Helen M.; Peat, George U. L.; Hodgkinson, Paul; Srivastava, Anant Kumar; Lu, Teng; Lui, Yun; Piltz, Ross O.; Demmel, Franz; Phillips, Anthony E.; Saines, Paul J. (2023). "A new avenue to relaxor-like ferroelectric behaviour found by probing the structure and dynamics of [NH3NH2]Mg(HCO2)3". Journal of Materials Chemistry C. 11 (28): 9695–9706. doi:10.1039/D3TC00480E.
- ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31–52. Bibcode:2006JMatS..41...31B. doi:10.1007/s10853-005-5915-7. S2CID 189842194.
- ^ Shipman, Matt (20 February 2018). "Atomic Structure of Ultrasound Material Not What Anyone Expected". NC State News.
- ^ Cabral, Matthew J.; Zhang, Shujun; Dickey, Elizabeth C.; LeBeau, James M. (19 February 2018). "Gradient chemical order in the relaxor Pb(MgNb)O". Applied Physics Letters. 112 (8): 082901. Bibcode:2018ApPhL.112h2901C. doi:10.1063/1.5016561.
- ^ and, and (September 1988). "Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors". Proceedings., Second International Conference on Properties and Applications of Dielectric Materials. pp. 125–128 vol.1. doi:10.1109/ICPADM.1988.38349. S2CID 137495812.
- ^ a b Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun (2014-12-24). "Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness". ACS Applied Materials & Interfaces. 6 (24): 22417–22422. doi:10.1021/am506247w. ISSN 1944-8244. OSTI 1392947. PMID 25405727.
- ^ Drnovšek, Silvo; Casar, Goran; Uršič, Hana; Bobnar, Vid (2013-10-01). "Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system". Physica Status Solidi B. 250 (10): 2232–2236. Bibcode:2013PSSBR.250.2232B. doi:10.1002/pssb.201349259. ISSN 1521-3951. S2CID 119554924.
- ^ a b Zhao, Peiyao; Wang, Hongxian; Wu, Longwen; Chen, Lingling; Cai, Ziming; Li, Longtu; Wang, Xiaohui (2019). "High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications". Advanced Energy Materials. 9 (17): 1803048. doi:10.1002/aenm.201803048. ISSN 1614-6840. S2CID 107988812.
- ^ Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S (2012-10-10). "Relaxor-ferroelectric superlattices: high energy density capacitors". Journal of Physics: Condensed Matter. 24 (44): 445901. Bibcode:2012JPCM...24R5901O. doi:10.1088/0953-8984/24/44/445901. ISSN 0953-8984. PMID 23053172. S2CID 25298142.