Jump to content

Regularized canonical correlation analysis

From Wikipedia, the free encyclopedia

Regularized canonical correlation analysis is a way of using ridge regression to solve the singularity problem in the cross-covariance matrices of canonical correlation analysis. By converting and into and , it ensures that the above matrices will have reliable inverses.

The idea probably dates back to Hrishikesh D. Vinod's publication in 1976 where he called it "Canonical ridge".[1][2] It has been suggested for use in the analysis of functional neuroimaging data as such data are often singular.[3] It is possible to compute the regularized canonical vectors in the lower-dimensional space.[4]

References

[edit]
  1. ^ Hrishikesh D. Vinod (May 1976). "Canonical ridge and econometrics of joint production". Journal of Econometrics. 4 (2): 147–166. doi:10.1016/0304-4076(76)90010-5. ISSN 0304-4076. Wikidata Q130748684.
  2. ^ Kantilal Mardia; J. T. Kent; J. M. Bibby (1979). Multivariate Analysis. Academic Press. ISBN 978-0-12-471252-2. OL 4425343M. Wikidata Q28842820.
  3. ^ F.Å. Nielsen; Lars Kai Hansen; Stephen C. Strother (May 1998). "Canonical Ridge Analysis with Ridge Parameter Optimization". NeuroImage. 7 (4): S758. doi:10.1016/S1053-8119(18)31591-X. ISSN 1053-8119. Wikidata Q129222383.
  4. ^ Finn Årup Nielsen (2001). Neuroinformatics in Functional Neuroimaging (PDF) (Thesis). Technical University of Denmark. Section 3.18.5