From Wikipedia, the free encyclopedia
RacCS203 is a bat-derived strain of severe acute respiratory syndrome–related coronavirus collected in acuminate horseshoe bats from sites in Thailand and sequenced by Lin-Fa Wang's team. It has 91.5% sequence similarity to SARS-CoV-2 and is most related to the RmYN02 strain. Its spike protein is closely related to RmYN02's spike, both highly divergent from SARS-CoV-2's spike.[1][2]
A phylogenetic tree based on whole-genome sequences of SARS-CoV-2 and related coronaviruses is:[3][4]
SARS‑CoV‑2 related coronavirus
|
|
(Bat) Rc-o319, 81% to SARS-CoV-2, Rhinolophus cornutus, Iwate, Japan[5]
|
|
|
|
|
|
|
|
Pangolin SARSr-CoV-GX, 85.3% to SARS-CoV-2, Manis javanica, smuggled from Southeast Asia[7]
|
|
|
|
Pangolin SARSr-CoV-GD, 90.1% to SARS-CoV-2, Manis javanica, smuggled from Southeast Asia[8]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SARS-CoV-1, 79% to SARS-CoV-2
|
|
SARS-CoV-2 compared to other SARSr-CoV (by nucleotide %)[13]
|
|
Strain
|
Full-length genome
|
ORF1ab
|
S
|
RBM
|
ORF3a
|
E
|
M
|
ORF6
|
ORF7a
|
ORF7b
|
ORF8
|
N
|
ORF10
|
RaTG13
|
96.10%
|
96.50%
|
92.30%
|
86.30%
|
96.30%
|
99.60%
|
95.50%
|
98.40%
|
95.60%
|
99.20%
|
97.00%
|
96.90%
|
99.20%
|
RmYN02
|
93.60%
|
97.10%
|
72.50%
|
61.90%
|
96.40%
|
98.70%
|
94.80%
|
96.80%
|
96.20%
|
91.00%
|
48.70%
|
97.30%
|
99.20%
|
RacCS203
|
91.50%
|
94.30%
|
71.30%
|
61.60%
|
91.90%
|
99.10%
|
94.60%
|
96.20%
|
92.40%
|
93.90%
|
91.60%
|
93.20%
|
99.20%
|
GD/1/2019
|
90.20%
|
90.20%
|
83.70%
|
86.90%
|
93.20%
|
99.10%
|
93.30%
|
95.70%
|
93.40%
|
91.70%
|
92.10%
|
96.20%
|
99.20%
|
SL-ZC45
|
87.70%
|
89.00%
|
75.50%
|
62.50%
|
87.80%
|
98.70%
|
93.40%
|
94.60%
|
88.80%
|
94.70%
|
88.50%
|
91.10%
|
99.20%
|
SL-ZXC21
|
87.50%
|
88.70%
|
74.90%
|
61.60%
|
88.90%
|
98.70%
|
93.40%
|
94.60%
|
89.10%
|
95.50%
|
88.50%
|
91.20%
|
99.20%
|
GX-P4L
|
85.40%
|
84.80%
|
83.60%
|
80.00%
|
86.80%
|
97.40%
|
91.30%
|
90.90%
|
86.60%
|
83.50%
|
81.30%
|
91.00%
|
88.90%
|
GX-P5L
|
85.20%
|
84.60%
|
83.30%
|
79.90%
|
87.00%
|
97.40%
|
91.30%
|
90.90%
|
86.40%
|
83.50%
|
80.70%
|
91.00%
|
94.00%
|
SARS-CoV
|
79.30%
|
79.70%
|
72.30%
|
71.90%
|
75.30%
|
93.50%
|
85.50%
|
75.50%
|
82.10%
|
83.80%
|
45.80%
|
88.20%
|
93.20%
|
Rc-o319
|
79.20%
|
79.80%
|
72.20%
|
70.10%
|
83.30%
|
97.40%
|
86.60%
|
86.60%
|
78.40%
|
77.30%
|
52.30%
|
88.30%
|
94.90%
|
SARS-CoV-2 compared to other SARSr-CoV (by amino acid %)[13]
|
|
Strain
|
Full-length genome
|
ORF1ab
|
S
|
RBM
|
ORF3a
|
E
|
M
|
ORF6
|
ORF7a
|
ORF7b
|
ORF8
|
N
|
ORF10
|
RaTG13
|
|
98.50%
|
97.30%
|
90.10%
|
97.80%
|
100.00%
|
99.60%
|
100.00%
|
97.50%
|
97.70%
|
95.00%
|
99.10%
|
97.40%
|
RmYN02
|
|
98.80%
|
72.40%
|
63.20%
|
96.70%
|
100.00%
|
98.70%
|
96.70%
|
95.90%
|
83.70%
|
28.20%
|
98.60%
|
97.40%
|
RacCS203
|
|
97.30%
|
72.30%
|
63.70%
|
97.50%
|
100.00%
|
99.10%
|
98.40%
|
95.90%
|
93.00%
|
94.20%
|
95.70%
|
-
|
GD/1/2019
|
|
96.70%
|
90.00%
|
96.90%
|
97.10%
|
100.00%
|
98.70%
|
96.70%
|
97.50%
|
95.40%
|
95.00%
|
97.90%
|
97.40%
|
SL-ZC45
|
|
95.60%
|
80.20%
|
65.90%
|
90.90%
|
100.00%
|
98.70%
|
93.40%
|
87.60%
|
93.00%
|
94.20%
|
94.30%
|
97.40%
|
SL-ZXC21
|
|
95.20%
|
79.70%
|
65.90%
|
92.00%
|
100.00%
|
98.70%
|
93.40%
|
88.40%
|
93.00%
|
94.20%
|
94.30%
|
-
|
GX-P4L
|
|
92.50%
|
92.30%
|
86.60%
|
89.50%
|
100.00%
|
98.20%
|
95.10%
|
88.40%
|
-
|
87.60%
|
93.60%
|
73.70%
|
GX-P5L
|
|
92.50%
|
92.40%
|
86.60%
|
89.80%
|
100.00%
|
98.20%
|
95.10%
|
88.40%
|
72.10%
|
87.60%
|
93.80%
|
84.20%
|
SARS-CoV
|
|
86.10%
|
75.80%
|
73.10%
|
72.40%
|
94.70%
|
90.50%
|
67.20%
|
85.30%
|
81.40%
|
-
|
90.50%
|
81.60%
|
Rc-o319
|
|
87.60%
|
76.20%
|
73.50%
|
87.00%
|
98.70%
|
91.00%
|
83.60%
|
73.80%
|
69.80%
|
26.80%
|
89.50%
|
86.80%
|
- RaTG13, 96.2% similarity to SARS-COV-2
- RmYN02, 93.3% similarity to SARS-COV-2
- ^ Wacharapluesadee, S; Tan, CW; Maneeorn, P; Duengkae, P; Zhu, F; Joyjinda, Y; Kaewpom, T; Chia, WN; Ampoot, W; Lim, BL; Worachotsueptrakun, K; Chen, VC; Sirichan, N; Ruchisrisarod, C; Rodpan, A; Noradechanon, K; Phaichana, T; Jantarat, N; Thongnumchaima, B; Tu, C; Crameri, G; Stokes, MM; Hemachudha, T; Wang, LF (9 February 2021). "Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia". Nature Communications. 12 (1): 972. Bibcode:2021NatCo..12..972W. doi:10.1038/s41467-021-21240-1. PMC 7873279. PMID 33563978.
- ^ "Coronavirus: Bat scientists find new evidence". BBC News. 10 February 2021.
- ^ a b Zhou H, Ji J, Chen X, Bi Y, Li J, Wang Q, et al. (August 2021). "Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses". Cell. 184 (17): 4380–4391.e14. doi:10.1016/j.cell.2021.06.008. PMC 8188299. PMID 34147139.
- ^ a b Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. (February 2021). "Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia". Nature Communications. 12 (1): 972. Bibcode:2021NatCo..12..972W. doi:10.1038/s41467-021-21240-1. PMC 7873279. PMID 33563978.
- ^ Murakami S, Kitamura T, Suzuki J, Sato R, Aoi T, Fujii M, et al. (December 2020). "Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan". Emerging Infectious Diseases. 26 (12): 3025–3029. doi:10.3201/eid2612.203386. PMC 7706965. PMID 33219796.
- ^ a b Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, et al. (June 2020). "A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein". Current Biology. 30 (11): 2196–2203.e3. doi:10.1016/j.cub.2020.05.023. PMC 7211627. PMID 32416074.
- ^ Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al. (July 2020). "Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins". Nature. 583 (7815): 282–285. Bibcode:2020Natur.583..282L. doi:10.1038/s41586-020-2169-0. PMID 32218527. S2CID 214683303.
- ^ Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. (July 2020). "Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins". Nature. 583 (7815): 286–289. Bibcode:2020Natur.583..286X. doi:10.1038/s41586-020-2313-x. PMID 32380510. S2CID 256822274.
- ^ a b Delaune D, Hul V, Karlsson EA, Hassanin A, Ou TP, Baidaliuk A, et al. (November 2021). "A novel SARS-CoV-2 related coronavirus in bats from Cambodia". Nature Communications. 12 (1): 6563. Bibcode:2021NatCo..12.6563D. doi:10.1038/s41467-021-26809-4. PMC 8578604. PMID 34753934.
- ^ Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, et al. (June 2020). "A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein". Current Biology. 30 (11): 2196–2203.e3. doi:10.1016/j.cub.2020.05.023. PMC 7211627. PMID 32416074.
- ^ Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. (March 2020). "A pneumonia outbreak associated with a new coronavirus of probable bat origin". Nature. 579 (7798): 270–273. Bibcode:2020Natur.579..270Z. doi:10.1038/s41586-020-2012-7. PMC 7095418. PMID 32015507.
- ^ Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B, et al. (April 2022). "Bat coronaviruses related to SARS-CoV-2 and infectious for human cells". Nature. 604 (7905): 330–336. Bibcode:2022Natur.604..330T. doi:10.1038/s41586-022-04532-4. PMID 35172323. S2CID 246902858.
- ^ a b Wacharapluesadee, Supaporn; Tan, Chee Wah; Maneeorn, Patarapol; Duengkae, Prateep; Zhu, Feng; Joyjinda, Yutthana; Kaewpom, Thongchai; Chia, Wan Ni; Ampoot, Weenassarin; Lim, Beng Lee; Worachotsueptrakun, Kanthita (2021-02-09). "Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia". Nature Communications. 12 (1): 972. Bibcode:2021NatCo..12..972W. doi:10.1038/s41467-021-21240-1. ISSN 2041-1723. PMC 7873279. PMID 33563978.