Jump to content

Pseudoathletic appearance

From Wikipedia, the free encyclopedia
Pseudoathletic appearance
Other namesHerculean appearance, Bodybuilder-like appearance

Pseudoathletic appearance is a medical sign meaning to have the false appearance of a well-trained athlete due to pathologic causes (disease or injury) instead of true athleticism.[1][2] It is also referred to as a Herculean or bodybuilder-like appearance.[3] It may be the result of muscle inflammation (immunity-related swelling), muscle hyperplasia, muscle hypertrophy, muscle pseudohypertrophy (muscle atrophy with infiltration of fat or other tissue), or symmetrical subcutaneous (under the skin) deposits of fat or other tissue.

The mechanism resulting in this sign may stay consistent or may change, while the sign itself remains. For instance, some individuals with Duchenne and Becker muscular dystrophy may start with true muscle hypertrophy, but later develop into pseudohypertrophy.[4]

In healthy individuals, resistance training and heavy manual labour creates muscle hypertrophy through signalling from mechanical stimulation (mechanotransduction) and from sensing available energy reserves (such as AMP through AMP-activated protein kinase); however, in the absence of a sports or vocational explanation for muscle hypertrophy, especially with accompanying muscle symptoms (such as myalgia, cramping, or exercise intolerance), then a neuromuscular disorder should be suspected.[5][6]

As muscle hypertrophy is a response to strenuous anaerobic activity, ordinary everyday activity would become strenuous in diseases that result in premature muscle fatigue (neural or metabolic), or disrupt the excitation-contraction coupling in muscle, or cause repetitive or sustained involuntary muscle contractions (fasciculations, myotonia, or spasticity).[5][6] In lipodystrophy, an abnormal deficit of subcutaneous fat accentuates the appearance of the muscles, though in some forms the muscles are quantifiably hypertrophic (possibly due to a metabolic abnormality).[7][8]

Diseases

[edit]

Skeletal muscle

[edit]
Disease grouping Disease Muscle(s) typically affected Age of onset Biopsy, ultrasonography, CT scan or MRI
Hyperplasia Myostatin-related muscle hypertrophy

(MSTN gene)

General Prenatal-onset Myofibre hyperplasia and decreased adipose tissue.
Beckwith–Wiedemann syndrome Macroglossia

/hemihypertrophy of limb or body

Prenatal to infantile-onset Wide phenotypic variability. Macroglossia (enlarged tongue) and hemihyperplasia (enlargement on one side of the body) in general or an isolated limb.[9][10]
Aberrant muscle syndrome

(congenital muscular hyperplasia of the hand and/or foot)

(PIK3CA-related overgrowth spectrum)

Hand and/or foot[11][12] Childhood-onset Muscle hyperplasia and ectopic (out of place) striated muscle fibres in dermis and hypodermis.[11][12]
Parasitic Disseminated muscular cysticercosis syndrome[13] General

/calf muscle[5]

Variable Pork tapeworm cysts[13]
Trichinosis[10] General Variable Skeletal muscle inflammation (myositis) secondary to roundworm cysts and larvae.
Inflammation Inflammatory myopathies

(Focal myositis, polymyositis, granulomatous myositis, inclusion body myositis)

Calf muscle[14][15]/general
Sarcoid granulomas/Sarcoidosis Calf muscle[14]/general Inflammatory cells and deposits of sarcoid granulomas
Amyloid deposits/Amyloidosis

(Inflammatory protein serum amyloid A, or in association with inflammatory diseases)

Calf muscle[14]/general[16] Amyloid deposits[16]
Ossification Fibrodysplasia ossificans progressiva

(formerly known as myositis ossificans progressiva)

General Episodic inflammatory flare-ups involving skeletal muscle (myositis) secondary to muscle tissue turning into bone (ossification)[10][17]
Non-hereditary myositis ossificans General Episodic inflammatory flare-ups involving skeletal muscle (myositis) secondary to muscle tissue turning into bone (ossification)
Muscular dystrophy Duchenne muscular dystrophy Calf muscle

/general[4]

Childhood-onset Muscle hypertrophy may precede pseudohypertrophy by infiltration of fatty tissue[4]
Becker muscular dystrophy Calf muscle

/general[4][18]

Variable Muscle hypertrophy may precede pseudohypertrophy by infiltration of fatty tissue[4]
Facioscapulohumeral muscular dystrophy Calf muscle[15]/infraspinatus [19]

/deltoid muscles[5]

"Poly-hill sign" (hypertrophy and atrophy of shoulder girdle muscles) and "Popeye sign" (atrophy of biceps, but spared forearm).[19]
Myotonic dystrophy types 1 & 2 Calf muscle[5][20] Variable Variable. Calf muscle hypertrophy rare in type 1, EMG showing persistent myotonic discharges in affected muscles.[20] Calf muscle hypertrophy common in type 2 (about 50%), EMG may be normal or show myotonic discharges.[5]
Limb-girdle muscular dystrophy (LGMD)

types R1 (formerly, 2A), R3 (2D), R4 (2E), R5 (2C), R6 (2F), R7 (2G), R8 (2H), R9 (2I), R10 (2J), R11 (2K), R12 (2L), R13 (2M), R14 (2N), R15 (2O), R16 (2P), R19 (2T), R20 (2U), R23, R24, R26, R28

Calf muscle[18][21][22][23] /macroglossia[21] /general[21] Variable Hypertrophy and/or pseudohypertrophy by fatty infiltration of muscle. Classic dystrophic changes include myonecrosis and regeneration, variations in muscle fibre size, myofibrosis, fatty infiltration.[21]


LGMD1H shows histochemical evidence suggestive of a mitochondrial myopathy and since 2017 was excluded from LGMD (see below under metabolic myopathy).[24][25]

Muscular dystrophy-dystroglycanopathy (MDDG)

(types A2, A4, B1, B2, B5, B6, C2, C3, C4, C5, C7, C8, C9, C12, C14)

Calf muscle[5] Hypertrophy and/or pseudohypertrophy by fatty infiltration of muscle.[26][27][28]
Myopathy, X-linked, with postural muscle atrophy

(formerly Emery–Dreifuss muscular dystrophy 6, X-linked)

Proximal muscles Variable (late childhood to adult-onset) Muscle hypertrophy precedes muscle atrophy. Biopsy shows myopathic or dystrophic changes, rimmed vacuoles, cytoplasmic bodies, and granulofilamentous material.[29]
Emery–Dreifuss muscular dystrophy 2, autosomal dominant (EDMD2)

(formerly, LGMD1B)

Calf muscle[30] Childhood-onset Calf muscle hypertrophy. Biopsy shows neurogenic and myopathic changes, including fibre type variation, central nuclei, fibrosis and fatty infiltration. EMG myopathic.[30]
Miyoshi muscular dystrophy 3 Calf muscles

/extensor digitorum brevis muscles

Adult-onset Muscle hypertrophy and/or pseudohypertrophy by infiltration of fatty tissue. Muscle hypertrophy precedes muscle atrophy.[31]
Myopathy, vacuolar, with CASQ1 aggregates Calf muscle Adolescence to adult-onset Calf muscle hypertrophy in some.[32] Muscle biopsy shows vacuoles predominantly in type II (fast-twitch/glycolytic) fibres, rare necrotic fibres, CASQ1-immunopositive inclusions, decreased density of calcium release units, abnormal sarcoplasmic reticulum elements, enlarged terminal cisternae of the sarcoplasmic reticulum, and enlarged vesicles of sarcoplasmic reticulum origin.[33]
Myofibrillar myopathy 3 (MFM3)

(MYOT gene, Ser55Phe missense mutation phenotype)

(formerly, LGMD1A)

Neck, trunk, thigh and leg muscles[34] Adult-onset Pseudohypertrophy by infiltration of fatty tissue. Muscle biopsy showed myofibrillar myopathy with prominent protein aggregates, type I (slow-twitch/oxidative) fibre predominance, other abnormalities. EMG myopathic with spontaneous activity at rest, with or without complex repetitive discharges. Muscles felt stiff upon palpitation[34]
Myofibrillar myopathy 8 (MFM8)

(PYROXD1 gene)

Rectus femoris[35]/calf muscle[36] Variable Hypertrophy and/or pseudohypertrophy by infiltration of fatty tissue. Fatty atrophy of muscle common, except the rectus femoris (a thigh muscle) commonly spared or hypertrophic.[35] Pseudohypertrophy of calf muscles.[36] EMG myopathic. Muscle biopsy commonly showed dystrophic changes, myofibrillar inclusions, nemaline rods, internalized nuclei, other myopathic features.[35]
Myofibrillar myopathy 9 with early respiratory failure (MFM9) Calf muscle Variable adult-onset

(20s-70s)

Calf muscle hypertrophy. EMG myopathic. Muscle biopsy myopathic or dystrophic changes with fibre splitting, eosinophilic cytoplasmic inclusions consistent with myofibrillar myopathy, rimmed vacuoles, and increased connective or fatty tissue.[37]
Myofibrillar myopathy 10 (MFM10) Trapezius and latissimus dorsi muscles Childhood to young adult-onset Hypertrophic neck and shoulder girdle muscles. Muscle biopsy shows structural abnormalities, lobulated type I (slow-twitch/oxidative) muscle fibres, irregular intermyofibrillar network, autophagic vacuoles with lipoprotein deposits, and sarcolemmal abnormalities.[38]
Myofibrillar myopathy 11 (MFM11) Calf muscle[39] Childhood-onset Pseudohypertrophic calf muscles (mild fatty infiltration seen on MRI). Biopsy shows type I (slow-twitch/oxidative) fibre predominance, centralized nuclei, core-like lesions, abnormal myofibrillar aggregates or inclusions. EMG myopathic.[39]
Myopathy, distal, Tateyama type (MPDT) Calf muscle[40] Childhood to young adult onset Hypertrophic calf muscles. Atrophy in muscles of hands and feet. Biopsy shows internal nuclei, absence of CAV3 staining, mild variation in fibre size, type I (slow-twitch/oxidative) fibre type predominance. EMG myopathic, low amplitude and short duration MUAPs.[40]
Myopathy, distal, infantile-onset Calf muscle[41] Infantile-onset Hypertrophic calf muscles. Biopsy shows fibre size variation, increased internal nuclei, degenerating fibres, increased connective tissue and fat. EMG myopathic in affected muscles, normal in peroneal (outer calf) muscles.[41]
Muscular dystrophy, autosomal recessive, with cardiomyopathy and triangular tongue (MDRCMTT)

(formerly, LGMD2W)

Calf muscle and macroglossia[42] Childhood-onset Hypertrophic calf muscles and enlarged tongue with a small tip (triangle tongue). Biopsy shows dystrophic features with fibre size variation, necrotic fibres, scattered fibrosis and fatty infiltration.[42][43]
Non-dystrophic myotonias and pseudomyotonias

(delayed muscle relaxation)

Myotonia congenita

(Chloride channelopathy, CLCN1 gene)

Calf muscle

/general[44][45]

Calf muscle hypertrophy.[46]
Potassium-aggravated myotonia, paramyotonia congenita

(Sodium channelopathy, SCN4A gene)

Calf muscle

/general[44][45]

Muscle hypertrophy.[5]
Brody disease

(formerly, Brody myopathy)

Calf muscle[44][47] Variable[47] Commonly marked variability of muscle fibre size, type II (fast-twitch/glycolytic) muscle fibres may be abnormally increased or decreased, usually increased internal nuclei, rarely nuclear centralization or nuclear clumping. Muscle activity is electrically silent on EMG.[47]
Rippling muscle disease (RMD) types 1 & 2

(RMD2 formerly, LGMD1C)

Calf muscle[21]

/general[48][49]

Muscle hypertrophy. Muscle activity is electrically silent on EMG.[48][49]
Lipodystrophy Familial partial lipodystrophy

(Köbberling–Dunnigan syndrome)

Calf muscle

/general[50][7]

Adolescence-onset Hypertrophy of calf muscles[50][7]
Congenital generalized lipodystrophy

(Berardinelli–Seip syndrome)

General[8] Infantile-onset Muscle hypertrophy[8]
Hypertonia

(spasticity or rigidity)

Spastic cerebral palsy Calf muscle[51] Childhood-onset accumulation of hydroxyproline (aminoacid exclusive to collagen) in calf muscles[51]
Stiff-person syndrome Torso/limbs Adult-onset Muscle hypertrophy and EMG demonstrates co-contraction of agonist and antagonist muscles and/or continuous motor unit activity in affected muscles.[52][53]
Denervation (pseudo)hypertrophy Peripheral nerve traumatic injury Calf muscle[54] Variable
Disorders of the anterior horn cells (such as poliomyelitis, spinal muscular atrophy, and Charcot–Marie–Tooth disease) Calf muscle[54] Variable
Radiculopathy

(pinched nerve)

Calf muscle[54]/thigh muscle[55] Adult-onset Variable. Hypertrophy or pseudohypertrophy by fatty infiltration of muscle.[54][55]
Endocrine myopathies Kocher–Debre–Semelaigne syndrome Calf muscle[14]/general Childhood-onset Muscle hypertrophy, abnormal glycogen accumulation (impaired glycogenolysis), mucopolysaccharide deposits, atrophy of type II (fast-twitch/glycolytic) muscle fibres. EMG normal or myopathic low amplitude and short MUAPs (motor unit action potentials),[56] decrease in muscle carnitine.[57]
Hoffmann syndrome Calf muscle[14]/general Adult-onset Variable (with or without mucoid deposits).[14][58][59] Muscle hypertrophy, abnormal glycogen accumulation (impaired glycogenolysis), mucopolysaccharide deposits, atrophy of type II (fast-twitch/glycolytic) muscle fibres, damaged mitochondria. EMG may be normal, neuropathic, myopathic, or mixed type.[14][58][59] Decrease in muscle carnitine.[57]
Denervation pseudohypertrophy of calf muscles secondary to diabetic neuropathy Calf muscle[60] Adult-onset Fatty infiltration of calf muscles (pseudohypertrophy) and myofibrosis.[60]
Acromegaly/Gigantism General[10] Muscle hypertrophy
Metabolic myopathies Late-onset Pompe disease (Glycogen storage disease type II)

(formerly, LGMD2V)

Calf muscle[61]/macroglossia[62][63] Variable (childhood to adulthood, but not infantile-onset) Calf muscle hypertrophy, abnormal glycogen accumulation within the lysosomes of muscle cells due to impaired glycogenolysis.[61] Macroglossia (enlarged tongue) due to infiltration of fat, or very rarely a benign tumour (pseudohypertrophy). The fatty tissue is seen on MRI as "bright tongue sign."[62][63][64]
Cori/Forbes disease (Glycogen storage disease type III) Sternocleidomastoid, trapezius and quadriceps muscles[65]/thigh muscles[5] Variable Hypertrophy[66] and pseudohypertrophy.[65][67] Abnormal glycogen accumulation within the cytosol of muscle cells due to impaired glycogenolysis.[67]
McArdle disease (Glycogen storage disease type V) Calf muscle[68][69] /quadriceps[70] /deltoid and bicep muscles[69] Childhood-onset Muscle hypertrophy, lean calf muscles, abnormal glycogen accumulation within the cytosol of muscle cells due to impaired glycogenolysis.[68][69][71] EMG normal or myopathic low amplitude, short duration polyphasic MUAPs (motor unit action potentials).[72][73] EMG results may be dynamic: more likely to be myopathic after 5 minutes of high-intensity isometric exercise.[73]
Muscle glycogen storage disease of unknown etiology in conjunction with dystrophin gene deletion[74] Calf muscle[74] Adult-onset

(30s)

Calf muscle hypertrophy. Muscle biopsy showed abnormal glycogen accumulation, without dystrophic changes. Histochemical studies were negative for any known disorder of glycogen metabolism. Atrophy of quadriceps (thigh) muscles and hip abductors. EMG showed myopathic changes in the legs, most prominent in the thighs and minimal changes in the arms. Predominance of type IIA (fast-twitch/oxidative) muscle fibres, deficiency of type I (slow-twitch/oxidative) and type IIB muscle fibres (fast-twitch/glycolytic). Histochemistry showed normal phosphorylase and other enzymes. Biochemical studies showed a phosphorylase activity just below normal range, with other activities being normal. Southern blot analysis revealed a deletion of exons 45 to 48 of dystrophin gene, which on Western blotting was shown to produce normal amounts of truncated dystrophin.[74]
Hereditary myopathy with lactic acidosis (HML)

(gene ISCU)

Calf muscle[75][76] Childhood-onset Some have hypertrophy of calf muscles.[75][76] Upon palpitation, some feel abnormally hard with or without tenderness.[75] Radiological examination showed no infiltration of fatty tissue.[75] Muscle biopsy showed proliferation of type I (slow-twitch/oxidative) muscle fibres, abnormal mitochondrial iron and lipid deposits. Histochemical studies show deficiency of succinate dehydrogenase and aconitase, defective oxidative phosphorylation. Some showed evidence of necrosis and regeneration.[75][76] EMG is normal or myopathic increased polyphasic MUAPs. EMG results may be dynamic: more likely to have increased polyphasic MUAPs after exercise.[75]
Muscular dystrophy, limb-girdle, type 1H

(As of 2017 was excluded from LGMD, but not yet assigned new nomenclature)[25]

Calf muscle[24] Variable

(teens-50s)

Muscle hypertrophy, muscle fibre type variation, ragged red fibres, absence of cytochrome c oxidase staining, evidence of mtDNA deletions, defective oxidative phosphorylation suggestive of mitochondrial myopathy.[24]
Malnutrition

(poor diet, malabsorption diseases, or drug side effect such as lipase inhibitor Orlistat)[77]

Vitamin D deficiency myopathy

(also known as osteomalacic myopathy)

Calf muscle[51] Adult-onset (no rickets) Muscle hypertrophy in rare cases.[51][15] Commonly abnormal glycogen accumulation (impaired glycogenolysis), atrophy of type II (fast-twitch/glycolytic) muscle fibres, enlarged inter-fibrillar spaces;[78][79] rarely infiltration of fat (pseudohypertrophy), and fibrosis.[78] EMG myopathic low amplitude, short duration polyphasic MUAPs (motor unit action potentials).[79]
Vitamin D deficiency myopathy secondary to Celiac disease Calf muscle[51] Adult-onset

(no rickets)

Congenital myopathies Central core disease

Congenital myopathy 1 A & B, Malignant hyperthermia susceptibility

(RYR1 gene)

Calf muscle[15][80] Muscle hypertrophy[15][80]
Centronuclear myopathy

Types 1, 2, & 6

Calf muscle[15][81][82][83][84] /paraspinal muscles[82]/ general[85] Variable.

Childhood- to adult-onset

Muscle hypertrophy. Muscle biopsy shows numerous centrally located nuclei, and may have other variable myopathic features.[81]
Congenital myopathy 5 with cardiomyopathy (CMYP5) Calf muscle[86] Infantile-onset Hypertrophic calf muscles. Biopsy shows centralized nuclei, type I (slow-twitch/oxidative) fibre predominance, mini core-like lesions with mitochondrial depletion and sarcomeric disorganization. Dystrophic changes more apparent in second decade.[86]
Congenital myopathy 9B, proximal, with minicore lesions Calf muscle[87] Infantile-onset Pseudohypertrophy due to fatty infiltration. Biopsy shows type I (slow-twitch/oxidative) fibre predominance, increased internal nuclei, Z-band streaming, and minicores that disrupt the myofibrillar striation pattern.[87]
Congenital myopathy 24 (CMYP24)

(formerly, nemaline myopathy 11, autosomal recessive)

Calf muscle[88] Childhood-onset Calf muscle pseudohypertrophy. Biopsy shows fibre size variation, type I (slow-twitch/oxidative) fibre predominance, cytoplasmic and intranuclear nemaline bodies. MRI shows fatty infiltration of tongue, back, thigh and calf muscles. EMG shows chronic denervation and myopathy.[88][89]
Tubular aggregate myopathy types 1 & 2

(genes STIM1, ORAI1)

Calf muscle[90] Typically childhood-onset Hypertrophy of type I and type II muscle fibres, type I (slow-twitch/oxidative) fibre predominance, fatty infiltration of affected muscles, tubular aggregates (TAs) mainly in type I fibres arranged in honeycomb-like structures (transversal sections) or aligned in parallel (longitudinal sections), internal nuclei, particulate glycogen scattered between tightly packed tubules, occasional lipofuscin granules within large TAs, EMG normal to myopathic.[91][90] Muscle oedema and fibrosis may accompany fatty infiltration.[92]
Myosin myopathies and Laing distal myopathy

(gene MYH7)

Laing distal myopathy

(Myopathy, distal, 1; MPD1)

Calf muscle[93][94] Variable. Typically childhood-onset Wide phenotypic variability. Typically hypertrophic calf muscles, atrophy of anterior compartment tibial muscles, predominance of type I fibres and numerous small type I fibres. Common are internal nuclei, structural abnormalities (especially minicores), and mitochondrial abnormalities (ragged red fibres). Rarely muscle necrosis, protein aggregates, rimmed vacuoles, filamentous inclusions, muscle atrophy with fat or connective tissue replacement (pseudohypertrophy), cytoplasmic bodies, and myofibrillar alterations. EMG myopathic or neurogenic.[93][94]
Myosin storage myopathy

(Congenital myopathy 7A, myosin storage; CMYP7A)

Calf muscle[93][95] Variable. Typically childhood-onset Wide phenotypic variability. Typically fatty infiltration of calf muscles (pseudohypertrophy), type I (slow-twitch/oxidative) fibre predominance, type I fibres have abnormalities (hyaline bodies and myosin protein aggregates), and generalized muscle atrophy. Other variable muscle biopsy findings may be seen in addition. EMG is myopathic.[93][95]
Tumours Infiltrating lipoma Calf muscle[60] Pseudohypertrophy[60]
Sarcoma Pseudohypertrophy[5]
Vascular Intramuscular hematoma due to inherited or acquired coagulopathy Muscle swollen due to intramuscular bleeding and impaired blood clotting.[5]
Diabetic muscle infarction Quadriceps[5] Adult-onset Commonly in the thigh (quadriceps). Short-term, painful swelling of the muscle that is firm and warm to the touch. Muscle biopsy shows necrosis and oedema.[5]
Compartment syndrome (Acute or chronic exertional) Calf muscles

/general

Adult-onset Muscle swelling due to increased internal pressure from bleeding and inflammatory reactions. Muscle swelling in chronic exertional compartment syndrome relieves with rest. Acute compartment syndrome due to injury requires surgery.[96]
Short stature Myhre syndrome

(chronic denervation hypertrophy secondary to primary disease)

General[10] Childhood-onset Muscle hypertrophy
Schwartz-Jampel syndrome Infantile-onset Muscle hypertrophy[97]
Uruguay faciocardiomusculoskeletal syndrome Early childhood-onset Muscle hypertrophy[98]
Nivelon-Nivelon-Mabille syndrome Prenatal-onset Muscle hypertrophy in some[99]
Satoyoshi syndrome General Childhood to early adolescence-onset Muscle hypertrophy[100]
Stormorken syndrome

(gene STIM1)

Calf muscle[90] Childhood-onset Fatty infiltration of affected muscles, tubular aggregates (TAs) mainly in type I (slow-twitch/oxidative) fibres arranged in honeycomb-like structures (transversal sections) or aligned in parallel (longitudinal sections), type I (slow-twitch/oxidative) muscle fibre predominance, internal nuclei, [90]
Exclusively facial muscles Hemifacial myohyperplasia (HMH) Unilateral facial expression muscles and/or masticatory muscles Prenatal-onset Unilateral (one side of the face) hyperplasia in the muscles controlling facial expression and/or mastication (chewing)[101][10]
Idiopathic unilateral masseter muscle hypertrophy Masticatory muscles Adolescence-onset Unilateral (one side of the face) hypertrophy of masticatory muscles (used for chewing food). Biopsy showed hypertrophic muscle fibres.[102]
Masseter muscle hypertrophy Masticatory muscles Adolescence-onset Bilateral (both sides of the face) muscle hypertrophy of the masticatory muscles (used for chewing food)[103]
Bruxism

(excessive teeth grinding or clenching)

Masticatory muscles Hypertrophy of masticatory muscles (used for chewing food)[102]
Other Syringomyelia

(cyst or cavity within spinal cord)

Upper limbs

/calf muscle[104]

Muscle hypertrophy[104]
Peripheral nerve hyperexcitability syndromes

(Neuromyotonia, Morvan syndrome, Benign fasciculation syndrome, Cramp fasciculation syndrome)

Upper limbs

/calf muscle[104]

Muscle hypertrophy[104]
Episodic ataxia, type 1 (EA1)

(Episodic ataxia with myokymia; EAM)

(Potassium channelopathy, gene KCNA1)

Calf muscle[105] Childhood-onset Calf muscle hypertrophy. EMG shows polyphasic continuous motor unit discharges. Muscle biopsy shows enlargement of type I muscle fibres, consistent with denervation.[105]
Myasthenic syndrome, congenital, 23, presynaptic (CMS23) Calf muscle[106] Infantile-onset Calf muscle hypertrophy. EMG shows abnormal jitter. Biopsy normal or non-specific myopathic features.[106]
Familial myoedema, muscular hypertrophy and stiffness Calf muscle[107] Childhood-onset Calf muscle hypertrophy[107] Muscle biopsy showed unspecified myopathic changes, many vacuoles between myofibrils. EMG showed no myopathic discharges. Myoedema response in whole body.[107][108]
Strongman syndrome

(Muscle hypertrophy syndrome, myalgic[10])

General Childhood-onset Muscle hypertrophy[109][110]
Hypertrophia musculorum vera

(Latin for true muscle hypertrophy)

Calf muscle

/masseter muscle[111][112]

Variable. Typically adult-onset

(early 20s)

Calf muscle hypertrophy, there may also be hypertrophy of masseter muscles (used for chewing food). Biopsy of affected muscles shows hypertrophy of muscle fibres with occasional central migration of sarcolemmal nuclei. EMG of affected muscles is myopathic.[111][112]
TANGO2-related disease

(Metabolic crises, recurrent, with rhabdomyolysis, cardiac arrhythmias, and neurodegeneration; MECRCN)

Hemihypertrophy of arm and leg[113][114] Infantile-onset Wide phenotypic variability. Hemihypertrophy of right arm and leg (rare).[113][114] Abnormal autophagy and mitophagy, may have normal or abnormal secondary fatty acid metabolism and/or respiratory chain dysfunction in muscle biopsy.[115]
Atypical Werner syndrome Limbs[116] Variable.

Adolescence- or early adult-onset

Muscle hypertrophy of the limbs[116]
Dilated cardiomyopathy 1X (CMD1X) Calf muscle[117][118] Bilateral calf muscle hypertrophy[117][118]
Chromosome Xp21 deletion syndrome Calf muscle[119] Childhood-onset Bilateral calf muscle hypertrophy[119]
Neuromuscular oculoauditory syndrome (NMOAS) Calf muscle[120]
Myopathy with extrapyramidal signs (MPXPS) Calf muscle[121][122]
Habitual toe walking secondary to autism spectrum disorder Calf muscle[51] Childhood-onset Muscle hypertrophy

Skin and other non-muscle tissue

[edit]
Disease grouping Disease Body part(s) typically affected Age of onset Biopsy, ultrasonography, CT scan or MRI
Lipomatosis Madelung disease Upper trunk Adult-onset Symmetrical subcutaneous adipose tissue (unencapsulated lipomas)
Parasitic Disseminated cysticercosis Skin/General Variable Pork tapeworm cysts
Inflammation of the joint Amyloidosis shoulders "shoulder pad sign"[123] Adult-onset Amyloid deposits, significant thickening of the subdeltoid bursa[123]
Synovial fluid leak Burst Baker's cyst Calf[5][124] Adult-onset Swelling of the calf due to synovial fluid leaking into it from a burst Baker's cyst.
Phlebetic lymphedema Venous thrombosis/

Post-thrombotic syndrome

Lower extremities[5] Adult-onset Swelling of the legs with discolouration of the skin (darkening or reddening) due to a blood clot in a deep vein and subsequent swelling of lymphatic system.
Chronic venous insufficiency Lower extremities Adult-onset Swelling of the legs, with possible discolouration of the skin (darkening or reddening). Swelling and discolouration is most prominent towards the direction of gravity (foot/ankle when standing). Depending on severity, the calf and thigh may appear swollen. Skin conditions can develop such as venous ulcers, lipodermatosclerosis, and stasis dermatitis.

See also

[edit]

References

[edit]
  1. ^ "pseudoathletic", Wiktionary, 2016-06-02, retrieved 2023-06-12
  2. ^ Cheng, Chun-Yu (2023-01-11). "Pseudo-athletic appearance from excess alcohol use". BMJ. 380: e072885. doi:10.1136/bmj-2022-072885. ISSN 1756-1833. S2CID 255570540.
  3. ^ "Myotonia Congenita - Symptoms, Causes, Treatment | NORD". rarediseases.org. Retrieved 2023-06-12.
  4. ^ a b c d e Kornegay, Joe N.; Childers, Martin K.; Bogan, Daniel J.; Bogan, Janet R.; Nghiem, Peter; Wang, Jiahui; Fan, Zheng; Howard, James F.; Schatzberg, Scott J.; Dow, Jennifer L.; Grange, Robert W.; Styner, Martin A.; Hoffman, Eric P.; Wagner, Kathryn R. (February 2012). "The Paradox of Muscle Hypertrophy in Muscular Dystrophy". Physical Medicine and Rehabilitation Clinics of North America. 23 (1): 149–xii. doi:10.1016/j.pmr.2011.11.014. ISSN 1047-9651. PMC 5951392. PMID 22239881.
  5. ^ a b c d e f g h i j k l m n o Walters, Jon (October 2017). "Muscle hypertrophy and pseudohypertrophy". Practical Neurology. 17 (5): 369–379. doi:10.1136/practneurol-2017-001695. ISSN 1474-7766. PMID 28778933.
  6. ^ a b Nadaj-Pakleza, Aleksandra (2022-07-01). "Muscle hypertrophy: indicative of good health or disease? / Hypertrophie musculaire: signe de bonne santé ou de maladie ?". Les Cahiers de Myologie (in French and English) (25): 10–15. doi:10.1051/myolog/202225004. ISSN 2108-2219.
  7. ^ a b c Ji, Hongzhao; Weatherall, Paul; Adams-Huet, Beverley; Garg, Abhimanyu (August 2013). "Increased skeletal muscle volume in women with familial partial lipodystrophy, Dunnigan variety". The Journal of Clinical Endocrinology and Metabolism. 98 (8): E1410–1413. doi:10.1210/jc.2013-1297. ISSN 1945-7197. PMC 3733861. PMID 23783098.
  8. ^ a b c El-Darouti, Mohammad Ali; Al-Ali, Faiza Mohamed (2019), El-Darouti, Mohammad Ali; Al-Ali, Faiza Mohamed (eds.), "Loss of Subcutaneous Fat, Muscle Hypertrophy, Diabetes and Hyperlipidemia", Challenging Cases in Dermatology Volume 2: Advanced Diagnoses and Management Tactics, Cham: Springer International Publishing, pp. 7–11, doi:10.1007/978-3-030-21855-3_2, ISBN 978-3-030-21855-3, S2CID 202826748, retrieved 2023-10-12
  9. ^ "BECKWITH-WIEDEMANN SYNDROME; BWS". www.omim.org. Retrieved 2023-09-01.
  10. ^ a b c d e f g "Large Muscles". neuromuscular.wustl.edu. Retrieved 2023-07-03.
  11. ^ a b Delgado-Miguel, Carlos; Miguel-Ferrero, Miriam; Muñoz-Serrano, Antonio J.; Triana, Paloma; Martínez-González, Víctor; Rodríguez-Laguna, Lara; Boente, María del Carmen; Torrelo, Antonio; López-Gutiérrez, Juan C. (June 2021). "Congenital Aberrant Muscular Overgrowth of Hands and Feet in Patients With PIK3CA Overgrowth Spectrum: A Multicentric Study of Case Series". Journal of Vascular Anomalies. 2 (2): e010. doi:10.1097/JOVA.0000000000000010. ISSN 2690-2702.
  12. ^ a b Ogino, Toshihiko; Satake, Hiroshi; Takahara, Masatoshi; Kikuchi, Noriaki; Watanabe, Tadayosi; Iba, Kousuke; Ishii, Seiichi (June 2010). "Aberrant muscle syndrome: Hypertrophy of the hand and arm due to aberrant muscles with or without hypertrophy of the muscles". Congenital Anomalies. 50 (2): 133–138. doi:10.1111/j.1741-4520.2010.00277.x. ISSN 0914-3505. PMID 20214671.
  13. ^ a b Kumar, Sunil; Jain, Shraddha; Kashikar, Shivali (December 2012). "Herculean appearance due to disseminated cysticercosis: case report". Asian Pacific Journal of Tropical Medicine. 5 (12): 1007–1008. doi:10.1016/S1995-7645(12)60192-8. ISSN 2352-4146. PMID 23199724.
  14. ^ a b c d e f g Mangaraj, Swayamsidha; Sethy, Ganeswar (2014). "Hoffman's syndrome – A rare facet of hypothyroid myopathy". Journal of Neurosciences in Rural Practice. 5 (4): 447–448. doi:10.4103/0976-3147.140025. ISSN 0976-3147. PMC 4173264. PMID 25288869.
  15. ^ a b c d e f Reimers, C. D.; Schlotter, B.; Eicke, B. M.; Witt, T. N. (November 1996). "Calf enlargement in neuromuscular diseases: a quantitative ultrasound study in 350 patients and review of the literature". Journal of the Neurological Sciences. 143 (1–2): 46–56. doi:10.1016/s0022-510x(96)00037-8. ISSN 0022-510X. PMID 8981297. S2CID 25971689.
  16. ^ a b Lawson, Thomas M.; Bevan, Martin A.; Williams, Bryan D. (August 2002). "Clinical images: Skeletal muscle pseudo-hypertrophy in myeloma-associated amyloidosis". Arthritis and Rheumatism. 46 (8): 2251. doi:10.1002/art.10422. ISSN 0004-3591. PMID 12209535.
  17. ^ Pignolo, Robert J.; Shore, Eileen M.; Kaplan, Frederick S. (2011-12-01). "Fibrodysplasia ossificans progressiva: clinical and genetic aspects". Orphanet Journal of Rare Diseases. 6: 80. doi:10.1186/1750-1172-6-80. ISSN 1750-1172. PMC 3253727. PMID 22133093.
  18. ^ a b de Visser, Marianne (2020-12-01). "Late-onset myopathies: clinical features and diagnosis". Acta Myologica. 39 (4): 235–244. doi:10.36185/2532-1900-027. ISSN 1128-2460. PMC 7783434. PMID 33458579.
  19. ^ a b M, Suhas; S, Patil; S, Nayak (2019-10-01). "Climb 6-hills in a coat with Popeye, you shall find facioscapulohumeral dystrophy - Going from phenotype to genotype". Journal of Medical and Scientific Research. 7 (4): 120–122. doi:10.17727/jmsr.2019/7-21.
  20. ^ a b Anegawa, T.; Namamura, M.; Hara, K.; Yamamoto, K. (October 1993). "[True muscle hypertrophy of the unilateral calf in congenital myotonic dystrophy--a case report]". Rinsho Shinkeigaku = Clinical Neurology. 33 (10): 1100–1102. ISSN 0009-918X. PMID 8293616.
  21. ^ a b c d e Chu, Mary Lynn; Moran, Ellen (October 2018). "The Limb–Girdle Muscular Dystrophies: Is Treatment on the Horizon?". Neurotherapeutics. 15 (4): 849–862. doi:10.1007/s13311-018-0648-x. ISSN 1933-7213. PMC 6277288. PMID 30019308.
  22. ^ Pegoraro, Elena; Hoffman, Eric P. (1993), Adam, Margaret P.; Feldman, Jerry; Mirzaa, Ghayda M.; Pagon, Roberta A. (eds.), "Limb-Girdle Muscular Dystrophy Overview – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY", GeneReviews®, Seattle (WA): University of Washington, Seattle, PMID 20301582, retrieved 2023-12-25
  23. ^ Khan, Amjad; Wang, Rongrong; Han, Shirui; Umair, Muhammad; Abbas, Safdar; Khan, Muhammad Ismail; Alshabeeb, Mohammad A.; Alfadhel, Majid; Zhang, Xue (2019-10-29). "Homozygous missense variant in the TTN gene causing autosomal recessive limb-girdle muscular dystrophy type 10". BMC Medical Genetics. 20 (1): 166. doi:10.1186/s12881-019-0895-7. ISSN 1471-2350. PMC 6819411. PMID 31664938.
  24. ^ a b c Bisceglia, Luigi; Zoccolella, Stefano; Torraco, Alessandra; Piemontese, Maria Rosaria; Dell'Aglio, Rosa; Amati, Angela; De Bonis, Patrizia; Artuso, Lucia; Copetti, Massimiliano; Santorelli, Filippo Maria; Serlenga, Luigi; Zelante, Leopoldo; Bertini, Enrico; Petruzzella, Vittoria (June 2010). "A new locus on 3p23–p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H". European Journal of Human Genetics. 18 (6): 636–641. doi:10.1038/ejhg.2009.235. ISSN 1018-4813. PMC 2987336. PMID 20068593.
  25. ^ a b Straub, Volker; Murphy, Alexander; Udd, Bjarne; LGMD workshop study group (August 2018). "229th ENMC international workshop: Limb girdle muscular dystrophies - Nomenclature and reformed classification Naarden, the Netherlands, 17-19 March 2017". Neuromuscular Disorders. 28 (8): 702–710. doi:10.1016/j.nmd.2018.05.007. hdl:10138/305127. ISSN 1873-2364. PMID 30055862. S2CID 51865029.
  26. ^ "Phenotypic Series - PS236670 - OMIM". omim.org. Retrieved 2023-09-30.
  27. ^ "Phenotypic Series - PS613155 - OMIM". www.omim.org. Retrieved 2023-07-03.
  28. ^ "Phenotypic Series - PS609308 - OMIM". omim.org. Retrieved 2023-09-30.
  29. ^ "#300696 - MYOPATHY, X-LINKED, WITH POSTURAL MUSCLE ATROPHY; XMPMA". omim.org. Retrieved 2023-07-03.
  30. ^ a b van der Kooi, A. J.; Ledderhof, T. M.; de Voogt, W. G.; Res, C. J.; Bouwsma, G.; Troost, D.; Busch, H. F.; Becker, A. E.; de Visser, M. (May 1996). "A newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement". Annals of Neurology. 39 (5): 636–642. doi:10.1002/ana.410390513. hdl:1765/58319. ISSN 0364-5134. PMID 8619549.
  31. ^ "#613319 - MIYOSHI MUSCULAR DYSTROPHY 3; MMD3". omim.org. Retrieved 2023-07-03.
  32. ^ Di Blasi, Claudia; Sansanelli, Serena; Ruggieri, Alessandra; Moriggi, Manuela; Vasso, Michele; D'Adamo, Adamo Pio; Blasevich, Flavia; Zanotti, Simona; Paolini, Cecilia; Protasi, Feliciano; Tezzon, Frediano; Gelfi, Cecilia; Morandi, Lucia; Pessia, Mauro; Mora, Marina (September 2015). "A CASQ1 founder mutation in three Italian families with protein aggregate myopathy and hyperCKaemia". Journal of Medical Genetics. 52 (9): 617–626. doi:10.1136/jmedgenet-2014-102882. ISSN 1468-6244. PMID 26136523. S2CID 24276340.
  33. ^ "#616231 - MYOPATHY, VACUOLAR, WITH CASQ1 AGGREGATES; VMCQA". omim.org. Retrieved 2023-07-03.
  34. ^ a b Gamez, Josep; Armstrong, Judith; Shatunov, Alexey; Selva-O'Callaghan, Albert; Dominguez-Oronoz, Rosa; Ortega, Arantxa; Goldfarb, Lev; Ferrer, Isidre; Olivé, Montse (2009-02-15). "Generalized muscle pseudo-hypertrophy and stiffness associated with the myotilin Ser55Phe mutation: a novel myotilinopathy phenotype?". Journal of the Neurological Sciences. 277 (1–2): 167–171. doi:10.1016/j.jns.2008.10.019. ISSN 0022-510X. PMC 2760960. PMID 19027924.
  35. ^ a b c Sainio, Markus T.; Välipakka, Salla; Rinaldi, Bruno; Lapatto, Helena; Paetau, Anders; Ojanen, Simo; Brilhante, Virginia; Jokela, Manu; Huovinen, Sanna; Auranen, Mari; Palmio, Johanna; Friant, Sylvie; Ylikallio, Emil; Udd, Bjarne; Tyynismaa, Henna (2019). "Recessive PYROXD1 mutations cause adult-onset limb-girdle-type muscular dystrophy". Journal of Neurology. 266 (2): 353–360. doi:10.1007/s00415-018-9137-8. ISSN 0340-5354. PMC 6373352. PMID 30515627.
  36. ^ a b Saha, Madhurima; Reddy, Hemakumar M.; Salih, Mustafa A.; Estrella, Elicia; Jones, Michael D.; Mitsuhashi, Satomi; Cho, Kyung-Ah; Suzuki-Hatano, Silveli; Rizzo, Skylar A.; Hamad, Muddathir H.; Mukhtar, Maowia M.; Hamed, Ahlam A.; Elseed, Maha A.; Lek, Monkol; Valkanas, Elise (2018-11-01). "Impact of PYROXD1 deficiency on cellular respiration and correlations with genetic analyses of limb-girdle muscular dystrophy in Saudi Arabia and Sudan". Physiological Genomics. 50 (11): 929–939. doi:10.1152/physiolgenomics.00036.2018. ISSN 1094-8341. PMC 6293114. PMID 30345904.
  37. ^ "MYOPATHY, MYOFIBRILLAR, 9, WITH EARLY RESPIRATORY FAILURE; MFM9". www.omim.org. Retrieved 2023-12-27.
  38. ^ "#619040 - MYOFIBRILLAR MYOPATHY 10; MFM10". omim.org. Retrieved 2023-07-03.
  39. ^ a b "MYOFIBRILLAR MYOPATHY 11; MFM11". www.omim.org. Retrieved 2023-12-31.
  40. ^ a b "MYOPATHY, DISTAL, TATEYAMA TYPE; MPDT". www.omim.org. Retrieved 2023-12-31.
  41. ^ a b "MYOPATHY, DISTAL, INFANTILE-ONSET". www.omim.org. Retrieved 2024-01-01.
  42. ^ a b Chardon, Jodi Warman; Smith, A. C.; Woulfe, J.; Pena, E.; Rakhra, K.; Dennie, C.; Beaulieu, C.; Huang, Lijia; Schwartzentruber, J.; Hawkins, C.; Harms, M. B.; Dojeiji, S.; Zhang, M.; FORGE Canada Consortium; Majewski, J. (December 2015). "LIMS2 mutations are associated with a novel muscular dystrophy, severe cardiomyopathy and triangular tongues". Clinical Genetics. 88 (6): 558–564. doi:10.1111/cge.12561. ISSN 1399-0004. PMID 25589244.
  43. ^ "MUSCULAR DYSTROPHY, AUTOSOMAL RECESSIVE, WITH CARDIOMYOPATHY AND TRIANGULAR TONGUE; MDRCMTT". www.omim.org. Retrieved 2024-01-01.
  44. ^ a b c Stunnenberg, Bas C.; LoRusso, Samantha; Arnold, W. David; Barohn, Richard J.; Cannon, Stephen C.; Fontaine, Bertrand; Griggs, Robert C.; Hanna, Michael G.; Matthews, Emma; Meola, Giovanni; Sansone, Valeria A.; Trivedi, Jaya R.; van Engelen, Baziel G.M.; Vicart, Savine; Statland, Jeffrey M. (October 2020). "Guidelines on clinical presentation and management of nondystrophic myotonias". Muscle & Nerve. 62 (4): 430–444. doi:10.1002/mus.26887. ISSN 0148-639X. PMC 8117169. PMID 32270509.
  45. ^ a b Trivedi, Jaya R.; Bundy, Brian; Statland, Jeffrey; Salajegheh, Mohammad; Rayan, Dipa Raja; Venance, Shannon L.; Wang, Yunxia; Fialho, Doreen; Matthews, Emma; Cleland, James; Gorham, Nina; Herbelin, Laura; Cannon, Stephen; Amato, Anthony; Griggs, Robert C. (July 2013). "Non-dystrophic myotonia: prospective study of objective and patient reported outcomes". Brain. 136 (7): 2189–2200. doi:10.1093/brain/awt133. ISSN 0006-8950. PMC 3692030. PMID 23771340.
  46. ^ Kornblum, C.; Lutterbey, G. G.; Czermin, B.; Reimann, J.; von Kleist-Retzow, J.-C.; Jurkat-Rott, K.; Wattjes, M. P. (February 2010). "Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita". Acta Neurologica Scandinavica. 121 (2): 131–135. doi:10.1111/j.1600-0404.2009.01228.x. PMID 20047568.
  47. ^ a b c Molenaar, Joery P.; Verhoeven, Jamie I.; Rodenburg, Richard J.; Kamsteeg, Erik J.; Erasmus, Corrie E.; Vicart, Savine; Behin, Anthony; Bassez, Guillaume; Magot, Armelle; Péréon, Yann; Brandom, Barbara W.; Guglielmi, Valeria; Vattemi, Gaetano; Chevessier, Frédéric; Mathieu, Jean (2020-02-01). "Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients". Brain: A Journal of Neurology. 143 (2): 452–466. doi:10.1093/brain/awz410. ISSN 1460-2156. PMC 7009512. PMID 32040565.
  48. ^ a b "600332 - RIPPLING MUSCLE DISEASE 1; RMD1". omim.org. Retrieved 2023-07-03.
  49. ^ a b "#606072 - RIPPLING MUSCLE DISEASE 2; RMD2". omim.org. Retrieved 2023-07-03.
  50. ^ a b Wildermuth, Susanne; Spranger, Stephanie; Spranger, Matthias; Raue, Friedhelm; Meinck, Hans-Michael (July 1996). "Köbberling-Dunnigan syndrome: A rare cause of generalized muscular hypertrophy". Muscle & Nerve. 19 (7): 843–847. doi:10.1002/(SICI)1097-4598(199607)19:7<843::AID-MUS5>3.0.CO;2-9. ISSN 0148-639X. PMID 8965837. S2CID 46022844 – via Wiley Online Library.
  51. ^ a b c d e f Hassan, Ijas; Bhanudeep, Singanamalla; Madaan, Priyanka; Chhajed, Monika; Saini, Lokesh (2021). "Bilateral Calf Hypertrophy and Isolated Motor Delay: Think Beyond Muscular Dystrophy". Journal of Pediatric Neurosciences. 16 (2): 173–174. doi:10.4103/jpn.JPN_171_20. ISSN 1817-1745. PMC 8706592. PMID 35018192.
  52. ^ "Stiff-Person Syndrome - Neurologic Disorders". Merck Manuals Professional Edition. Retrieved 2023-07-03.
  53. ^ Newsome, Scott D.; Johnson, Tory (2022-08-15). "Stiff person syndrome spectrum disorders; more than meets the eye". Journal of Neuroimmunology. 369: 577915. doi:10.1016/j.jneuroim.2022.577915. ISSN 1872-8421. PMC 9274902. PMID 35717735.
  54. ^ a b c d Hynes, John P.; Glynn, David; Eustace, Stephen J. (2022-03-22). "Denervation pseudo hypertrophy of the calf: An important cause of lower limb swelling". Radiology Case Reports. 17 (5): 1702–1704. doi:10.1016/j.radcr.2022.02.066. ISSN 1930-0433. PMC 8956883. PMID 35345565.
  55. ^ a b Shields, Lisa B.E.; Iyer, Vasudeva; Bhupalam, Rukmaiah C.; Zhang, Yi Ping; Shields, Christopher B. (2021-10-19). "Hypertrophy of the tensor fascia lata: A pseudotumor due to lumbar radiculopathy". Surgical Neurology International. 12: 522. doi:10.25259/SNI_857_2021. ISSN 2229-5097. PMC 8571211. PMID 34754572.
  56. ^ Rajvanshi, Satyam; Philip, Rajeev; Rai, Gopal K.; Gupta, K. K. (May 2012). "Kocher-Debre-Semelaigne syndrome". Thyroid Research and Practice. 9 (2): 53. doi:10.4103/0973-0354.96047. ISSN 0973-0354.
  57. ^ a b Sinclair, Christopher; Gilchrist, James M.; Hennessey, James V.; Kandula, Manju (September 2005). "Muscle carnitine in hypo- and hyperthyroidism". Muscle & Nerve. 32 (3): 357–359. doi:10.1002/mus.20336. ISSN 0148-639X. PMID 15803480. S2CID 41839983.
  58. ^ a b Rodolico, Carmelo; Bonanno, Carmen; Pugliese, Alessia; Nicocia, Giulia; Benvenga, Salvatore; Toscano, Antonio (2020-09-01). "Endocrine myopathies: clinical and histopathological features of the major forms". Acta Myologica. 39 (3): 130–135. doi:10.36185/2532-1900-017. ISSN 1128-2460. PMC 7711326. PMID 33305169.
  59. ^ a b Qureshi, Waseem; Hassan, Ghulam; Khan, Ghulam Qadir; Kadri, Syed Manzoor; Kak, Manish; Ahmad, Manzoor; Tak, Shahid; Kundal, Darshan Lal; Hussain, Showkat; Rather, Abdul Rashid; Masoodi, Ibrahim; Sikander, Sabia (2005-07-20). "Hoffmann's syndrome: a case report". GMS German Medical Science. 3: Doc05. ISSN 1612-3174. PMC 2703243. PMID 19675722.
  60. ^ a b c d Wong, Kin Hoi; Chow, Maria Bernadette Che Ying; Lui, Tun Hing; Cheong, Yue Kew; Tam, Kwok Fai (2017-07-25). "Denervation pseudohypertrophy of calf muscles associated with diabetic neuropathy". Radiology Case Reports. 12 (4): 815–820. doi:10.1016/j.radcr.2017.06.011. ISSN 1930-0433. PMC 5823303. PMID 29484078.
  61. ^ a b Menon, M. Suraj; Roopch, P. Sreedharan; Kabeer, K. Abdulkhayar; Shaji, C. Velayudhan (July 2016). "Calf Muscle Hypertrophy in Late Onset Pompe's Disease". Archives of Medicine and Health Sciences. 4 (2): 251. doi:10.4103/2321-4848.196188. ISSN 2321-4848. S2CID 58424073.
  62. ^ a b Milisenda, José C.; Pujol, Teresa; Grau, Josep M. (2016-10-11). "Not only bright tongue sign in Pompe disease". Neurology. 87 (15): 1629–1630. doi:10.1212/WNL.0000000000003211. ISSN 0028-3878. PMID 27765823.
  63. ^ a b Karam, Chafic (2016-01-26). "Bright tongue sign in Pompe disease". Neurology. 86 (4): 401. doi:10.1212/WNL.0000000000002321. ISSN 0028-3878. PMID 26810423.
  64. ^ Sharma, Rohit. "Bright tongue sign | Radiology Reference Article | Radiopaedia.org". Radiopaedia. Retrieved 2023-11-20. The bright tongue sign describes hyperintensity of the tongue on T1 weighted MRI, often best appreciated in sagittal views. It represents chronic denervation and resultant fatty replacement.
  65. ^ a b Marbini, A.; Gemignani, F.; Saccardi, F.; Rimoldi, M. (October 1989). "Debrancher deficiency neuromuscular disorder with pseudohypertrophy in two brothers". Journal of Neurology. 236 (7): 418–420. doi:10.1007/BF00314902. ISSN 0340-5354. PMID 2809644. S2CID 21158814.
  66. ^ Hokezu, Y.; Nagamatsu, K.; Nakagawa, M.; Osame, M.; Ohnishi, A. (June 1983). "[Glycogenosis type III with peripheral nerve disorder and muscular hypertrophy in an adult]". Rinsho Shinkeigaku = Clinical Neurology. 23 (6): 473–479. ISSN 0009-918X. PMID 6317246.
  67. ^ a b Kishnani, Priya S.; Austin, Stephanie L.; Arn, Pamela; Bali, Deeksha S.; Boney, Anne; Case, Laura E.; Chung, Wendy K.; Desai, Dev M.; El-Gharbawy, Areeg; Haller, Ronald; Smit, G. Peter A.; Smith, Alastair D.; Hobson-Webb, Lisa D.; Wechsler, Stephanie Burns; Weinstein, David A. (July 2010). "Glycogen Storage Disease Type III diagnosis and management guidelines". Genetics in Medicine. 12 (7): 446–463. doi:10.1097/GIM.0b013e3181e655b6. ISSN 1530-0366. PMID 20631546. S2CID 4609175.
  68. ^ a b Rodríguez-Gómez, I.; Santalla, A.; Díez-Bermejo, J.; Munguía-Izquierdo, D.; Alegre, L. M.; Nogales-Gadea, G.; Arenas, J.; Martín, M. A.; Lucía, A.; Ara, I. (November 2018). "Non-osteogenic muscle hypertrophy in children with McArdle disease". Journal of Inherited Metabolic Disease. 41 (6): 1037–1042. doi:10.1007/s10545-018-0170-7. hdl:10578/19657. ISSN 1573-2665. PMID 29594644. S2CID 4394513.
  69. ^ a b c Pietrusz, Aleksandra; Scalco, Renata S.; Quinlivan, Ros (2018). "Resistance Exercise Training in McArdle Disease: Myth or Reality?". Case Reports in Neurological Medicine. 2018: 9658251. doi:10.1155/2018/9658251. ISSN 2090-6668. PMC 6186374. PMID 30363996Patient 1 had hypertrophy of calf, deltoid and bicep muscles before resistance training commenced, while living a sedentary lifestyle with an office job, walking short distances was difficult as was everyday tasks like vacuuming and cutting the grass. After four years of resistance training, pre-existing hypertrophy in deltoid muscles increased further and muscle bulk was gained in additional muscle groups (quadriceps, gluteus, pectoralis, and trapezius muscles).{{cite journal}}: CS1 maint: postscript (link)
  70. ^ Quinlivan, R.; Buckley, J.; James, M.; Twist, A.; Ball, S.; Duno, M.; Vissing, J.; Bruno, C.; Cassandrini, D.; Roberts, M.; Winer, J.; Rose, M.; Sewry, C. (2010-11-01). "McArdle disease: a clinical review". Journal of Neurology, Neurosurgery & Psychiatry. 81 (11): 1182–1188. doi:10.1136/jnnp.2009.195040. ISSN 0022-3050. PMID 20861058.
  71. ^ Quinlivan, R.; James, M.; Buckley, J.; Short, D.; Bruno, C.; Cassandrini, D.; Winer, J.; Roberts, M.; Rose, M.; Sewry, C. (October 2007). "M.P.4.01 Clinical aspects of McArdle disease in the UK". Neuromuscular Disorders. 17 (9–10): 859. doi:10.1016/j.nmd.2007.06.327. ISSN 0960-8966.
  72. ^ Chéraud, Chrystel; Froissart, Roseline; Lannes, Béatrice; Echaniz-Laguna, Andoni (January 2018). "Novel variant in the PYGM gene causing late-onset limb-girdle myopathy, ptosis, and camptocormia". Muscle & Nerve. 57 (1): 157–160. doi:10.1002/mus.25588. ISSN 1097-4598. PMID 28120463.
  73. ^ a b Semplicini, Claudio; Hézode-Arzel, Marianne; Laforêt, Pascal; Béhin, Anthony; Leonard-Louis, Sarah; Hogrel, Jean-Yves; Petit, François; Eymard, Bruno; Stojkovic, Tanya; Fournier, Emmanuel (2018-01-19). "The role of electrodiagnosis with long exercise test in mcardle disease". Muscle & Nerve. 58: 64–71. doi:10.1002/mus.26074. ISSN 1097-4598. PMID 29350794.
  74. ^ a b c Rose, M. R.; Howard, R. S.; Genet, S. A.; McMahon, C. J.; Whitfield, A.; Morgan-Hughes, J. A. (January 1993). "A case of myopathy associated with a dystrophin gene deletion and abnormal glycogen storage". Muscle & Nerve. 16 (1): 57–62. doi:10.1002/mus.880160110. ISSN 0148-639X. PMID 8423832.
  75. ^ a b c d e f Larsson, L. -E.; Linderholm, H.; Müller, R.; Ringqvist, T.; Sörnäs, R. (October 1964). "Hereditary metabolic myopathy with paroxysmal myoglobinuria due to abnormal glycolysis1". Journal of Neurology, Neurosurgery, and Psychiatry. 27 (5): 361–380. doi:10.1136/jnnp.27.5.361. ISSN 0022-3050. PMC 495765. PMID 14213465.
  76. ^ a b c Crooks, Daniel R.; Natarajan, Thanemozhi G.; Jeong, Suh Young; Chen, Chuming; Park, Sun Young; Huang, Hongzhan; Ghosh, Manik C.; Tong, Wing-Hang; Haller, Ronald G.; Wu, Cathy; Rouault, Tracey A. (2014-01-01). "Elevated FGF21 secretion, PGC-1α and ketogenic enzyme expression are hallmarks of iron–sulfur cluster depletion in human skeletal muscle". Human Molecular Genetics. 23 (1): 24–39. doi:10.1093/hmg/ddt393. ISSN 0964-6906. PMC 3857942. PMID 23943793.
  77. ^ Rasheed, Khalid; Sethi, Pooja; Bixby, Eric (May 2013). "Severe vitamin d deficiency induced myopathy associated with rhabydomyolysis". North American Journal of Medical Sciences. 5 (5): 334–336. doi:10.4103/1947-2714.112491 (inactive 1 November 2024). ISSN 2250-1541. PMC 3690793. PMID 23814767.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  78. ^ a b Polly, Patsie; Tan, Timothy C. (2014-04-16). "The role of vitamin D in skeletal and cardiac muscle function". Frontiers in Physiology. 5: 145. doi:10.3389/fphys.2014.00145. ISSN 1664-042X. PMC 3995052. PMID 24782788.
  79. ^ a b Yoshikawa, S.; Nakamura, T.; Tanabe, H.; Imamura, T. (June 1979). "Osteomalacic myopathy". Endocrinologia Japonica. 26 (Suppl): 65–72. doi:10.1507/endocrj1954.26.supplement_65. ISSN 0013-7219. PMID 467350.
  80. ^ a b van den Bersselaar, Luuk R.; van Alfen, Nens; Kruijt, Nick; Kamsteeg, Erik-Jan; Fernandez-Garcia, Miguel A.; Treves, Susan; Riazi, Sheila; Yang, Chu-Ya; Malagon, Ignacio; van Eijk, Lucas T.; van Engelen, Baziel G.M.; Scheffer, Gert-Jan; Jungbluth, Heinz; Snoeck, Marc M.J.; Voermans, Nicol C. (2023). "Muscle Ultrasound Abnormalities in Individuals with RYR1-Related Malignant Hyperthermia Susceptibility". Journal of Neuromuscular Diseases. 10 (4): 541–554. doi:10.3233/JND-230018. ISSN 2214-3599. PMC 10357171. PMID 37154182.
  81. ^ a b Jungbluth, Heinz; Wallgren-Pettersson, Carina; Laporte, Jocelyn (2008-09-25). "Centronuclear (myotubular) myopathy". Orphanet Journal of Rare Diseases. 3 (1): 26. doi:10.1186/1750-1172-3-26. ISSN 1750-1172. PMC 2572588. PMID 18817572.
  82. ^ a b Papadimas, George Konstantinos; Xirou, Sophia; Kararizou, Evangelia; Papadopoulos, Constantinos (January 2020). "Update on Congenital Myopathies in Adulthood". International Journal of Molecular Sciences. 21 (10): 3694. doi:10.3390/ijms21103694. ISSN 1422-0067. PMC 7279481. PMID 32456280.
  83. ^ Kouwenberg, Carlyn; Bohm, Johann; Erasmus, Corrie; van Balken, Irene; Vos, Sandra; Kusters, Benno; Kamsteeg, Erik-Jan; Biancalana, Valerie; Koch, Catherine; Dondaine, Nicolas; Laporte, Jocelyn; Voermans, Nicol (2017-11-21). "Dominant Centronuclear Myopathy with Early Childhood Onset due to a Novel Mutation in BIN1". Journal of Neuromuscular Diseases. 4 (4): 349–355. doi:10.3233/JND-170238. PMID 29103045.
  84. ^ Ahmad, Ilyas; Khan, Ayaz; Noor Ul Ayan, Hafiza; Budde, Birgit; Altmüller, Janine; Korejo, Asad Aslam; Nürnberg, Gudrun; Thiele, Holger; Tariq, Muhmmad; Nürnberg, Peter; Erdmann, Jeanette (February 2023). "A novel MAP3K20 mutation causing centronuclear myopathy-6 with fiber-type disproportion in a Pakistani family". Journal of Human Genetics. 68 (2): 107–109. doi:10.1038/s10038-022-01085-2. ISSN 1435-232X. PMC 9873553. PMID 36217027.
  85. ^ Jeannet, P.-Y.; Bassez, G.; Eymard, B.; Laforêt, P.; Urtizberea, J. A.; Rouche, A.; Guicheney, P.; Fardeau, M.; Romero, N. B. (2004-05-11). "Clinical and histologic findings in autosomal centronuclear myopathy". Neurology. 62 (9): 1484–1490. doi:10.1212/01.wnl.0000124388.67003.56. ISSN 1526-632X. PMID 15136669.
  86. ^ a b "CONGENITAL MYOPATHY 5 WITH CARDIOMYOPATHY; CMYP5". www.omim.org. Retrieved 2023-12-31.
  87. ^ a b "#618823 - CONGENITAL MYOPATHY 9B, PROXIMAL, WITH MINICORE LESIONS; CMYP9B". omim.org. Retrieved 2023-07-03.
  88. ^ a b Polavarapu, Kiran; Bardhan, Mainak; Anjanappa, Ram Murthy; Vengalil, Seena; Preethish-Kumar, Veeramani; Shingavi, Leena; Chawla, Tanushree; Nashi, Saraswati; Mohan, Dhaarini; Arunachal, Gautham; Geetha, Thenral S.; Ramprasad, Vedam; Nalini, Atchayaram (July 2021). "Nemaline Rod/Cap Myopathy Due to Novel Homozygous MYPN Mutations: The First Report from South Asia and Comprehensive Literature Review". Journal of Clinical Neurology (Seoul, Korea). 17 (3): 409–418. doi:10.3988/jcn.2021.17.3.409. ISSN 1738-6586. PMC 8242322. PMID 34184449.
  89. ^ "CONGENITAL MYOPATHY 24; CMYP4". www.omim.org. Retrieved 2024-01-01.
  90. ^ a b c d Morin, Gilles; Biancalana, Valérie; Echaniz-Laguna, Andoni; Noury, Jean-Baptiste; Lornage, Xavière; Moggio, Maurizio; Ripolone, Michela; Violano, Raffaella; Marcorelles, Pascale; Maréchal, Denis; Renaud, Florence; Maurage, Claude-Alain; Tard, Céline; Cuisset, Jean-Marie; Laporte, Jocelyn (January 2020). "Tubular aggregate myopathy and Stormorken syndrome: Mutation spectrum and genotype/phenotype correlation". Human Mutation. 41 (1): 17–37. doi:10.1002/humu.23899. ISSN 1059-7794. PMID 31448844. S2CID 201753610.
  91. ^ Cameron, C. H. Stuart; Allen, Ingrid V.; Patterson, Victor; Avaria, Maria A. (December 1992). "Dominantly inherited tubular aggregate myopathy". The Journal of Pathology. 168 (4): 397–403. doi:10.1002/path.1711680410. ISSN 0022-3417. PMID 1484321. S2CID 3241237.
  92. ^ Lupi, Amalia; Spolaor, Simone; Favero, Alessandro; Bello, Luca; Stramare, Roberto; Pegoraro, Elena; Nobile, Marco Salvatore (2023-05-08). "Muscle magnetic resonance characterization of STIM1 tubular aggregate myopathy using unsupervised learning". PLOS ONE. 18 (5): e0285422. Bibcode:2023PLoSO..1885422L. doi:10.1371/journal.pone.0285422. ISSN 1932-6203. PMC 10166478. PMID 37155641.
  93. ^ a b c d Tajsharghi, Homa; Oldfors, Anders (January 2013). "Myosinopathies: pathology and mechanisms". Acta Neuropathologica. 125 (1): 3–18. doi:10.1007/s00401-012-1024-2. ISSN 1432-0533. PMC 3535372. PMID 22918376.
  94. ^ a b "MYOPATHY, DISTAL, 1; MPD1". www.omim.org. Retrieved 2023-09-23.
  95. ^ a b "CONGENITAL MYOPATHY 7A, MYOSIN STORAGE, AUTOSOMAL DOMINANT; CMYP7A". www.omim.org. Retrieved 2023-09-23.
  96. ^ Mohile, Neil; Perez, Jose; Rizzo, Michael; Emerson, Christopher P.; Foremny, Greg; Allegra, Paul; Greditzer, Harry G.; Jose, Jean (February 2020). "Chronic Lower Leg Pain in Athletes: Overview of Presentation and Management". HSS Journal: The Musculoskeletal Journal of Hospital for Special Surgery. 16 (1): 86–100. doi:10.1007/s11420-019-09669-z. ISSN 1556-3316. PMC 6973789. PMID 32015745.
  97. ^ "#255800 - SCHWARTZ-JAMPEL SYNDROME, TYPE 1; SJS1". omim.org. Retrieved 2023-07-03.
  98. ^ "#300280 - URUGUAY FACIOCARDIOMUSCULOSKELETAL SYNDROME; FCMSU". www.omim.org. Retrieved 2023-07-03.
  99. ^ "#600092 - NIVELON-NIVELON-MABILLE SYNDROME; NNMS". omim.org. Retrieved 2023-07-03.
  100. ^ "SATOYOSHI SYNDROME". www.omim.org. Retrieved 2023-09-01.
  101. ^ "606773 - HEMIFACIAL MYOHYPERPLASIA; HMH". www.omim.org. Retrieved 2023-07-03.
  102. ^ a b Ţarcă, Elena; Cojocaru, Elena; Luca, Alina Costina; Trandafir, Laura Mihaela; Roşu, Solange Tamara; Munteanu, Valentin; Țarcă, Viorel; Budacu, Cristian Constantin; Costea, Claudia Florida (2022-02-16). "Unusual Case of Masseter Muscle Hypertrophy in Adolescence—Case Report and Literature Overview". Diagnostics. 12 (2): 505. doi:10.3390/diagnostics12020505. ISSN 2075-4418. PMC 8871523. PMID 35204595.
  103. ^ "154850 - MASTICATORY MUSCLES, HYPERTROPHY OF". www.omim.org. Retrieved 2023-07-03.
  104. ^ a b c d Kathait, Aparna; Dhar, Siddharth; Garg, Divyani; Chatterjee, Atri; Chandan, Shishir K. (2022). "Syringomyelia: An Unusual Cause of Pronounced Calf Hypertrophy". Annals of Indian Academy of Neurology. 25 (6): 1182–1183. doi:10.4103/aian.aian_486_22. ISSN 0972-2327. PMC 9996497. PMID 36911462.
  105. ^ a b "EPISODIC ATAXIA, TYPE 1; EA1". www.omim.org. Retrieved 2023-12-27.
  106. ^ a b "MYASTHENIC SYNDROME, CONGENITAL, 23, PRESYNAPTIC; CMS23". www.omim.org. Retrieved 2023-12-31.
  107. ^ a b c Murayama, T.; Mano, K.; Watanabe, H.; Honda, H.; Sugimura, K. (October 1991). "[A family with autosomal dominant hereditary myoedema, muscular irritability, stiffness and hypertrophy]". Rinsho Shinkeigaku = Clinical Neurology. 31 (10): 1118–1123. ISSN 0009-918X. PMID 1802468.
  108. ^ Sadeh, M.; Berg, M.; Sandbank, U. (March 1990). "Familial myoedema, muscular hypertrophy and stiffness". Acta Neurologica Scandinavica. 81 (3): 201–204. doi:10.1111/j.1600-0404.1990.tb00966.x. ISSN 0001-6314. PMID 2353568.
  109. ^ Conte, Talita C.; et al. "A Missense Mutation in DCST2 Causes the Strongman Syndrome". The Canadian Institutes of Health Research - Institute of Genetics (CIHR-IG).
  110. ^ Brais, B.; Conte, T.; Dicaire, M.; Tetreault, M.; O'Ferrall, E.; Ravenscroft, G.; Laing, N.; Lamont, P.; Taivasssalo, T.; Hepple, R.; Mathieu, J. (October 2016). "A missense mutation in the putative sarcoplasmic reticulum transmembrane protein DCST2 causes dominant strongman syndrome". Neuromuscular Disorders. 26: S95. doi:10.1016/j.nmd.2016.06.038. ISSN 0960-8966. S2CID 54367645.
  111. ^ a b "HYPERTROPHIA MUSCULORUM VERA". omim.org. Retrieved 2023-09-23.
  112. ^ a b Poch, G. F.; Sica, E. P.; Taratuto, A.; Weinstein, I. H. (January 1971). "Hypertrophia musculorum vera. Study of a family". Journal of the Neurological Sciences. 12 (1): 53–61. doi:10.1016/0022-510x(71)90251-6. ISSN 0022-510X. PMID 5100002.
  113. ^ a b "#616878 - METABOLIC CRISES, RECURRENT, WITH RHABDOMYOLYSIS, CARDIAC ARRHYTHMIAS, AND NEURODEGENERATION; MECRCN - OMIM". www.omim.org. Retrieved 2024-10-09.
  114. ^ a b Ls, Kremer; F, Distelmaier; B, Alhaddad; M, Hempel; A, Iuso; C, Küpper; C, Mühlhausen; R, Kovacs-Nagy; R, Satanovskij; E, Graf; R, Berutti; G, Eckstein; R, Durbin; S, Sauer; Gf, Hoffmann (2016-02-04). "Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy". American Journal of Human Genetics. 98 (2): 358–362. doi:10.1016/j.ajhg.2015.12.009. ISSN 1537-6605. PMC 4746337. PMID 26805782.
  115. ^ de Calbiac, Hortense; Montealegre, Sebastian; Straube, Marjolène; Renault, Solène; Debruge, Hugo; Chentout, Loïc; Ciura, Sorana; Imbard, Apolline; Le Guillou, Edouard; Marian, Anca; Goudin, Nicolas; Caccavelli, Laure; Fabrega, Sylvie; Hubas, Arnaud; van Endert, Peter (2024-12-31). "TANGO2-related rhabdomyolysis symptoms are associated with abnormal autophagy functioning". Autophagy Reports. 3 (1). doi:10.1080/27694127.2024.2306766. ISSN 2769-4127.
  116. ^ a b Vigouroux, C; Caux, F; Capeau, J; Christin-Maitre, S; Cohen, A (November 2003). "LMNA mutations in atypical Werner's syndrome". The Lancet. 362 (9395): 1585. doi:10.1016/s0140-6736(03)14760-5. ISSN 0140-6736. PMID 14615128.
  117. ^ a b Oki, Shinya; Nagamatsu, Takeshi; Iriyama, Takayuki; Komatsu, Atsushi; Osuga, Yutaka; Fujii, Tomoyuki (November 2015). "A case of pregnancy complicated with dilated cardiomyopathy 1X". Oxford Medical Case Reports. 2015 (11): 351–353. doi:10.1093/omcr/omv056. ISSN 2053-8855. PMC 4630494. PMID 26566449.
  118. ^ a b "Mito DB". mitodb.com. Retrieved 2024-10-28.
  119. ^ a b Rathnasiri, Asanka; Senarathne, Udara; Arunath, Visvalingam; Hoole, Thabitha; Kumarasiri, Ishara; Muthukumarana, Oshanie; Jasinge, Eresha; Mettananda, Sachith (2021-10-24). "A rare co-occurrence of duchenne muscular dystrophy, congenital adrenal hypoplasia and glycerol kinase deficiency due to Xp21 contiguous gene deletion syndrome: case report". BMC Endocrine Disorders. 21 (1): 214. doi:10.1186/s12902-021-00876-6. ISSN 1472-6823. PMC 8543963. PMID 34689766.
  120. ^ Paine, Ingrid; et al. (June 2019). "Supplemental Data Paralog Studies Augment Gene Discovery: DDX and DHX Genes" (PDF). The American Journal of Human Genetics. 105 (2): 302–316. doi:10.1016/j.ajhg.2019.06.001. PMC 6698803. PMID 31256877.
  121. ^ Mukherjee, Debaleena; Mukherjee, Adreesh; Gupta, Subhadeep; Dubey, Souvik; Pandit, Alak (2023). "MICU1- Related Myopathy with Extrapyramidal Signs". Annals of Indian Academy of Neurology. 26 (5): 825. doi:10.4103/aian.aian_522_23. ISSN 0972-2327. PMC 10666854. PMID 38022436.
  122. ^ Musa, Sara; Eyaid, Wafaa; Kamer, Kimberli; Ali, Rehab; Al-Mureikhi, Mariam; Shahbeck, Noora; Al Mesaifri, Fatma; Makhseed, Nawal; Mohamed, Zakkiriah; AlShehhi, Wafaa Ali; Mootha, Vamsi K.; Juusola, Jane; Ben-Omran, Tawfeg (2019). "A Middle Eastern Founder Mutation Expands the Genotypic and Phenotypic Spectrum of Mitochondrial MICU1 Deficiency: A Report of 13 Patients". JIMD Reports. 43: 79–83. doi:10.1007/8904_2018_107. ISBN 978-3-662-58613-6. ISSN 2192-8304. PMC 6323007. PMID 29721912.
  123. ^ a b Uzunoğlu, Ceren; Toptaş, Tayfur; İpek, Yıldız; Arıkan, Fatma; Yılmaz, Fergün; Tuğlular, Tülin (September 2021). "Shoulder-Pad Sign in a Case of Amyloidosis Associated with Myeloma". Turkish Journal of Hematology. 38 (3): 233–234. doi:10.4274/tjh.galenos.2021.2021.0630. ISSN 1300-7777. PMC 8386310. PMID 34014054.
  124. ^ "Baker cyst - Symptoms and causes". Mayo Clinic. Retrieved 2024-01-06.

Further reading

[edit]

Neuromuscular disease centre, Washington University - Large or prominent muscles

National Center for Biotechnology Information (NCBI) - Skeletal muscle hypertrophy, generalized muscle hypertrophy, calf muscle hypertrophy, thigh hypertrophy

The Human Phenotype Ontology (HPO) project - Skeletal muscle hypertrophy, calf muscle hypertrophy, muscle hypertrophy of the lower extremities, upper limb muscle hypertrophy