Post-Minkowskian expansion
In physics, precisely in the general theory of relativity, post-Minkowskian expansions (PM) or post-Minkowskian approximations are mathematical methods used to find approximate solutions of Einstein's equations by means of a power series development of the metric tensor.
Unlike post-Newtonian expansions (PN), in which the series development is based on a combination of powers of the velocity (which must be negligible compared to that of light) and the gravitational constant, in the post-Minkowskian case the developments are based only on the gravitational constant, allowing analysis even at velocities close to that of light (relativistic).[1]
0PN | 1PN | 2PN | 3PN | 4PN | 5PN | 6PN | 7PN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1PM | ( 1 | + | + | + | + | + | + | + | + | ...) | ||||||||
2PM | ( 1 | + | + | + | + | + | + | + | ...) | |||||||||
3PM | ( 1 | + | + | + | + | + | + | ...) | ||||||||||
4PM | ( 1 | + | + | + | + | + | ...) | |||||||||||
5PM | ( 1 | + | + | + | + | ...) | ||||||||||||
6PM | ( 1 | + | + | + | ...) | |||||||||||||
Comparison table of powers used for PN and PM approximations in the case of two non-rotating bodies.
0PN corresponds to the case of Newton's theory of gravitation. 0PM (not shown) corresponds to the Minkowski flat space.[2] |
One of the earliest works on this method of resolution is that of Bruno Bertotti, published in Nuovo Cimento in 1956.[3]
References
[edit]- ^ Damour, Thibault (2016-11-07). "Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory". Physical Review D. 94 (10): 104015. arXiv:1609.00354. Bibcode:2016PhRvD..94j4015D. doi:10.1103/PhysRevD.94.104015. ISSN 2470-0010. S2CID 106399287.
- ^ Bern, Zvi; Cheung, Clifford; Roiban, Radu; Shen, Chia-Hsien; Solon, Mikhail P.; Zeng, Mao (2019-08-05). "Black Hole Binary Dynamics from the Double Copy and Effective Theory". Journal of High Energy Physics. 2019 (10): 206. arXiv:1908.01493. Bibcode:2019JHEP...10..206B. doi:10.1007/JHEP10(2019)206. ISSN 1029-8479. S2CID 199442337.
- ^ Bertotti, B. (1956-10-01). "On gravitational motion". Il Nuovo Cimento. 4 (4): 898–906. Bibcode:1956NCim....4..898B. doi:10.1007/BF02746175. ISSN 1827-6121. S2CID 120443098.