Positive element
In mathematics, an element of a *-algebra is called positive if it is the sum of elements of the form .[1]
Definition
[edit]Let be a *-algebra. An element is called positive if there are finitely many elements , so that holds.[1] This is also denoted by .[2]
The set of positive elements is denoted by .
A special case from particular importance is the case where is a complete normed *-algebra, that satisfies the C*-identity (), which is called a C*-algebra.
Examples
[edit]- The unit element of an unital *-algebra is positive.
- For each element , the elements and are positive by definition.[1]
In case is a C*-algebra, the following holds:
- Let be a normal element, then for every positive function which is continuous on the spectrum of the continuous functional calculus defines a positive element .[3]
- Every projection, i.e. every element for which holds, is positive. For the spectrum of such an idempotent element, holds, as can be seen from the continuous functional calculus.[3]
Criteria
[edit]Let be a C*-algebra and . Then the following are equivalent:[4]
- For the spectrum holds and is a normal element.
- There exists an element , such that .
- There exists a (unique) self-adjoint element such that .
If is a unital *-algebra with unit element , then in addition the following statements are equivalent:[5]
- for every and is a self-adjoint element.
- for some and is a self-adjoint element.
Properties
[edit]In *-algebras
[edit]Let be a *-algebra. Then:
- If is a positive element, then is self-adjoint.[6]
- The set of positive elements is a convex cone in the real vector space of the self-adjoint elements . This means that holds for all and .[6]
- If is a positive element, then is also positive for every element .[7]
- For the linear span of the following holds: and .[8]
In C*-algebras
[edit]Let be a C*-algebra. Then:
- Using the continuous functional calculus, for every and there is a uniquely determined that satisfies , i.e. a unique -th root. In particular, a square root exists for every positive element. Since for every the element is positive, this allows the definition of a unique absolute value: .[9]
- For every real number there is a positive element for which holds for all . The mapping is continuous. Negative values for are also possible for invertible elements .[7]
- Products of commutative positive elements are also positive. So if holds for positive , then .[5]
- Each element can be uniquely represented as a linear combination of four positive elements. To do this, is first decomposed into the self-adjoint real and imaginary parts and these are then decomposed into positive and negative parts using the continuous functional calculus.[10] For it holds that , since .[8]
- If both and are positive holds.[5]
- If is a C*-subalgebra of , then .[5]
- If is another C*-algebra and is a *-homomorphism from to , then holds.[11]
- If are positive elements for which , they commutate and holds. Such elements are called orthogonal and one writes .[12]
Partial order
[edit]Let be a *-algebra. The property of being a positive element defines a translation invariant partial order on the set of self-adjoint elements . If holds for , one writes or .[13]
This partial order fulfills the properties and for all with and .[8]
If is a C*-algebra, the partial order also has the following properties for :
- If holds, then is true for every . For every that commutates with and even holds.[14]
- If holds, then .[15]
- If holds, then holds for all real numbers .[16]
- If is invertible and holds, then is invertible and for the inverses holds.[15]
See also
[edit]Citations
[edit]References
[edit]- ^ a b c Palmer 2001, p. 798.
- ^ Blackadar 2006, p. 63.
- ^ a b Kadison & Ringrose 1983, p. 271.
- ^ Kadison & Ringrose 1983, pp. 247–248.
- ^ a b c d Kadison & Ringrose 1983, p. 245.
- ^ a b Palmer 2001, p. 800.
- ^ a b Blackadar 2006, p. 64.
- ^ a b c Palmer 2001, p. 802.
- ^ Blackadar 2006, pp. 63–65.
- ^ Kadison & Ringrose 1983, p. 247.
- ^ Dixmier 1977, p. 18.
- ^ Blackadar 2006, p. 67.
- ^ Palmer 2001, p. 799.
- ^ Kadison & Ringrose 1983, p. 249.
- ^ a b Kadison & Ringrose 1983, p. 250.
- ^ Blackadar 2006, p. 66.
Bibliography
[edit]- Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. ISBN 3-540-28486-9.
- Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
- Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.
- Palmer, Theodore W. (2001). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0.