Portal:Physics/Selected article/June 2007
In classical mechanics, the Laplace–Runge–Lenz vector (or simply the LRL vector) is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a planet revolving around a sun. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.
The hydrogen atom is a Kepler problem, since it comprises two charged particles interacting by Coulomb's law of electrostatics, another inverse-square central force. The LRL vector was essential in the first quantum mechanical derivation of the spectrum of the hydrogen atom, before the development of the Schrödinger equation. However, this approach is rarely used today.
In classical and quantum mechanics, conserved quantities generally correspond to a symmetry of the system. The conservation of the LRL vector corresponds to an unusual symmetry; the Kepler problem is mathematically equivalent to a particle moving freely on a four-dimensional sphere, so that the whole problem is symmetric under certain rotations of the four-dimensional sphere. This higher symmetry results from two properties of the Kepler problem: the velocity vector always moves in a perfect circle and, for a given total energy, all such velocity circles intersect each another in the same two points.
Image: The LRL vector A (shown in red) at a point on the elliptical orbit of a bound point particle moving under an inverse-square central force. The center of attraction is shown as a small black circle from which the position vectors (likewise black) emanate. The angular momentum vector L is perpendicular to the orbit. The coplanar vector (mk/r)r, where m is the mass and r is the radius, is shown in green. The vector A is constant in direction and magnitude.