Polytopological space
In general topology, a polytopological space consists of a set together with a family of topologies on that is linearly ordered by the inclusion relation where is an arbitrary index set. It is usually assumed that the topologies are in non-decreasing order.[1][2] However some authors prefer the associated closure operators to be in non-decreasing order where if and only if for all . This requires non-increasing topologies.[3]
Formal definitions
[edit]An -topological space is a set together with a monotone map Top where is a partially ordered set and Top is the set of all possible topologies on ordered by inclusion. When the partial order is a linear order then is called a polytopological space. Taking to be the ordinal number an -topological space can be thought of as a set with topologies on it. More generally a multitopological space is a set together with an arbitrary family of topologies on it.[2]
History
[edit]Polytopological spaces were introduced in 2008 by the philosopher Thomas Icard for the purpose of defining a topological model of Japaridze's polymodal logic (GLP).[1] They were later used to generalize variants of Kuratowski's closure-complement problem.[2][3] For example Taras Banakh et al. proved that under operator composition the closure operators and complement operator on an arbitrary -topological space can together generate at most distinct operators[2] where In 1965 the Finnish logician Jaakko Hintikka found this bound for the case and claimed[4] it "does not appear to obey any very simple law as a function of ".
See also
[edit]References
[edit]- ^ a b Icard, III, Thomas F. (2008). Models of the Polymodal Provability Logic (PDF) (Master's thesis). University of Amsterdam.
- ^ a b c d Banakh, Taras; Chervak, Ostap; Martynyuk, Tetyana; Pylypovych, Maksym; Ravsky, Alex; Simkiv, Markiyan (2018). "Kuratowski Monoids of -Topological Spaces". Topological Algebra and Its Applications. 6 (1): 1–25. arXiv:1508.07703. doi:10.1515/taa-2018-0001.
- ^ a b Canilang, Sara; Cohen, Michael P.; Graese, Nicolas; Seong, Ian (2021). "The closure-complement-frontier problem in saturated polytopological spaces". New Zealand Journal of Mathematics. 51: 3–27. arXiv:1907.08203. doi:10.53733/151. MR 4374156.
- ^ Hintikka, Jaakko (1965). "A closure and complement result for nested topologies". Fundamenta Mathematicae. 57: 97–106. MR 0195034.