Jump to content

Phosphatoantimonate

From Wikipedia, the free encyclopedia

Phosphatoantimonates are compounds that contain anions that contain phosphorus and antimony in the +5 oxidation state, along with oxygen. Thus they are a compound of phosphate and antimonate, bound together by oxygen.

phosphatoantimonates have been investigated as catalysts,[1] and ion exchange materials.[2]

List

[edit]
formula mw crystal system space group unit cell Å volume density comment references
SbOPO4 monoclinic C2c a = 6.791 b = 8.033 c = 7.046 β = 115.90° Z=4 [3]
SbIIISbV3(PO4)6 trigonal R3 a = 16.880 c = 21.196 Z=12 5230 mixed valence [4]
HSb(PO4)2·2H2O layered; can be exfoliated; can exchange H+ with other ions; can reversibly dehydrate [5][6]
H3Sb3P2O14•xH2O layered [7]
H5Sb5P2O20•xH2O 3D with channels [7]
Li5Sb5P2O20 [8]
(NH4)3Sb3P2O14•3H2O [9]
Na3SbO(PO4)2 orthorhombic P212121 a = 6.964 b = 9.284 c = 12.425 Z = 4 1D [10][11]
Na3Sb3P2O14 [8]
Na5Sb5P2O20 [8]
Mg0.50SbFe(PO4)3 hexagonal P3 a = 8.3443 c = 22.3629 Z=6 nasicon [12]
KSb2PO8 monoclinic Cc a=12.306 b=7.086 c=15.037 β=95.82° Z=8 1304.5 4.498 colourless; 3D [13][14]
KSb2PO8−xNy [15]
KSbP2O8 rhombohedral R3 a = 4.7623 c = 25.409 Z = 3 2D [13][16]
K2SbPO6 orthorhombic Pnma a= 9.429 b= 5.891 c= 11.030 Z= 4 1D [13][17]
4K2O · 4Sb2O5 · P2O5 · 8H2O

K8Sb8P2O29·8H2O

monovlinic a = 23.952 b = 9.515 c = 8.193 β = 124.77° 31P NMR shift −−6.77 ppm [18][19]
K3Sb3P2O14 rhombohedral R3m a = 7.147 c = 30.936 Z = 3 reversible hydration; 2D [13][20]
K3Sb3P2O14, 1.32H2O rhombohedral R3m a = 7.147 c = 30.936 Z=3 [21]
K3Sb3P2O14·5H2O hexagonal P3 Z=6 [22]
K5Sb5P2O20 orthorhombic Pnnm a= 23.443 b= 18.452 c= 7.149 z= 6 3D [13][23]
K2SbAs0.5P0.5O6 orthorhombic [24]
ScSbV3(PO4)6 monoclinic P21/n a=11.810 b=8.616 c=8.400 β=90.80° 854.6 [4]
NaSbCr(PO4)3 rhombohedral R3 a = 8.329 c = 22.094 Z=6 1327 nasicon [25]
Ca0.5AlSb(PO4)3 a=8.56 c=21.87 4.128 nasicon [26]
Mn0.50SbFe(PO4)3 rhombohedral R3 a=8.375 c=21.597 nasicon [27][28]
Mn0.5AlSb(PO4)3 rhombohedral R3c a=8.270 c=21,799 3.56 nasicon [26]
Ca0.5CrSb(PO4)3 a=8.61 c=22.08 4.321 nasicon [26]
Mn0.5CrSb(PO4)3 monoclinic P21/n a=12.280 b=8.814 c=8.613 β=91.03° 3.45 [26]
Sb1.50Fe0.50(PO4)3 hexagonal R32 a=8.305 c=22.035 [29]
(Sb0.50Fe0.50)P2O7 orthorhombic Pna21 a=7.865 b=15.699 c=7.847 pyrophosphate [29]
CaSb0.50Fe1.50(PO4)3 rhombohedral R3c a=8.514 c=21.871 nasicon [30]
Ca0.50SbFe(PO4)3 rhombohedral R3 a=8.257 c=22.276 nasicon [27][30]
Mn0.5FeSb(PO4)3 rhombohedral R3c a=8.374 c=21.593 3.68 nasicon [26]
NaSbFe(PO4)3 rhombohedral R3 a = 8.361 c = 22.222 Z=6 1345 nasicon [25]
Co[Sb(PO4)2]2·6H2O [5]
Ni0.50SbFe(PO4)3 hexagonal P3 a = 8.3384 c = 22.3456 nasicon [12]
Rb3Sb3P2O14 [8]
Rb3Sb3P2O14•3H2O rhombohedral R3m a=7.1445 c=31.802 [9]
Rb5Sb5P2O20 [8]
Sr0.50SbFe(PO4)3 rhombohedral R3 a = 8.227 c = 22.767 nasicon [27]
SrSb0.50Cr0.50(PO4)2 monoclinic C2/c a= 16.5038 b= 5.1632 c= 8.0410 β = 115.85° Z=4 617 yavapaiite [31]
SrSb0.50Fe1.50(PO4)3 rhombohedral R3c a = 8.339 c = 22.704 nasicon [27]
Sr(SbV0.50FeIII0.50)(PO4)2 monoclinic C2/c a = 16.5215 b = 5.1891 c = 8.0489 β = 115.70° Z=4 yavapaiite [32]
Sr(Ga0.5Sb0.5)(PO4)2 monoclinic C2/c a=16.455; b=5.158 c= 8.005 β=115.49° Z=4 613 [33]
YSbV3(PO4)6 R3 a=17.019 c=21.233 5326 [4]
Cd0.50SbFe(PO4)3 rhombohedral R3 a=8.313 c=21.996 nasicon [27][28]
SbV1.50InIII0.50(PO4)3 monoclinic P21/n a=11.801 b=8.623 c=8.372 β=90.93° [34]
SbV0.50InIII0.50P2O7 orthorhombic Pna21 a=7.9389 b=16.0664 c=7.9777 pyrophosphate [34]
InSbV3(PO4)6 monoclinic P21/n a=11.792 b=8.622 c=8.379 β=90.91° 851.8 [4]
NaSbIn(PO4)3 rhombohedral R3 a=8.329 c = 23.031 Z=6 1383 nasicon [25]
Cs3Sb3P2O14•3H2O rhombohedral R3m a=7.153 c=32.840 [9]
Cs4MgSb6P4O28 1858.39 tetragonal I41/a a=16.5170 c=10.7355 Z=4 2928.8 4.22 band gap 4.50 eV [35]
Cs4ZnSb6P4O28 tetragonal I41/a a=16.4821 c=10.7453 Z=4 2919.1 4.32 band gap 4.48 eV [35]
K0.8Ba1.6Sb4O9(PO4)2 (0 < x < 0.4) orthorhombic Pnma a = 20.998 b = 7.168 c = 9.569 [36]
Ba2Sb4O9(PO4)2 orthorhombic Pnma a = 20.9237 b = 7.1836 c = 9.5189 Z = 4 [36]
BaSb0.50Cr0.50(PO4)2 monoclinic C2/m a= 8.140 b= 5.175 c= 7.802 β = 94. 387° Z=2 328 yavapaiite [31]
BaSb2/3Mn1/3(PO4)2 monoclinic C2/m a= b= c=7.8808 β=94.4° Z=2 337 [37]
Ba(Sb0.50FeIII0.50)(PO4)2 monoclinic C2/m a = 8.1568 b = 5.1996 c = 7.8290 β = 94.53° Z=2 yavapaiite [32]
BaSb2/3Co1/3(PO4)2 monoclinic C2/m c=7.8581 β=94.7° Z=2 333 [37]
BaSb2/3Cu1/3(PO4)2 monoclinic C2/m c=7.8795 β=95.3° Z=2 331 [37]
BaSb2/3Zn1/3(PO4)2 monoclinic C2/m c=7.8497 β=94.8° Z=2 332 [37]
Ba(Ga0.5Sb0.5)(PO4)2 monoclinic C2/m a= 8.106 b= 5.178 c= 7.806 β=94.79° Z=2 327 [33]
Tl3Sb3P2O14•3H2O rhombohedral R3m a=7.135 c=31.447 [9]
PbSb0.50Cr0.50(PO4)2 monoclinic C2/c a= 16.684 b= 5.156 c= 8.115 β = 115.35° Z=4 631 yavapaiite [31]
Pb(Sb0.50FeIII0.50)(PO4)2 monoclinic C2/c a = 16.6925 b = 5.1832 c = 8.1215 β = 115.03° yavapaiite [32]
PbSb0.50Fe1.50(PO4)3 rhombohedral R3c a = 8.313 c = 23.000 Z=6 1377 nasicon [38]
Pb0.50SbFe(PO4)3 rhombohedral R3 a = 8.2397 c = 22.7801 Z=6 1339 nasicon [38]
Pb(Ga0.5Sb0.5)(PO4)2 monoclinic C2/c a=16.622 b=5.163 c=8.067 β=114.85° 628 [33]
BiSbV3(PO4)6 trigonal R3 a=17.034 c=21.260 5342.1 [4]
CaSb0.50Bi1.50(PO4)3 monoclinic P21/m a = 4.9358 b = 6.9953 c = 4.7075 β = 96.2° [39]

References

[edit]
  1. ^ Natarajan, Srinivasan; Thomas, John M. (February 1992). "The search for new solid acid catalysts: systems derived from phosphatoantimonates". Catalysis Today. 12 (4): 433–441. doi:10.1016/0920-5861(92)80060-Z.
  2. ^ Guo, Yan-Ling; Sun, Hai-Yan; Zeng, Xi; Lv, Tian-Tian; Yao, Yue-Xin; Zhuang, Ting-Hui; Feng, Mei-Ling; Huang, Xiao-Ying (March 2023). "Efficient removal of Sr2+ ions by a one-dimensional potassium phosphatoantimonate". Chemical Engineering Journal. 460: 141697. doi:10.1016/j.cej.2023.141697.
  3. ^ Piffard, Y.; Oyetola, S.; Verbaere, A.; Tournoux, M. (June 1986). "Synthesis, thermal stability, and crystal structure of antimony(V) phosphate SbOPO4". Journal of Solid State Chemistry. 63 (1): 81–85. doi:10.1016/0022-4596(86)90155-6.
  4. ^ a b c d e Kasahara, Kenzo; Imoto, Hideo; Saito, Taro (August 1995). "Preparation and Crystal Structure of a New Form of Sb2(PO4)3 and M1/2SbV3/2(PO4)3 (M = Y, In, and Sc)". Journal of Solid State Chemistry. 118 (1): 104–111. doi:10.1006/jssc.1995.1317.
  5. ^ a b Hudson, Michael J.; Locke, William; Mitchell, Philip C. H. (1995). "Ion-exchange and protonic species in the antimony hydrogen phosphate HSb(PO 4 ) 2 ·2H 2 O". J. Mater. Chem. 5 (1): 159–163. doi:10.1039/JM9950500159. ISSN 0959-9428.
  6. ^ Prasad, G.K.; Kumada, N.; Yamanaka, J.; Yonesaki, Y.; Takei, T.; Kinomura, N. (May 2006). "Lamellar nanocomposites based on exfoliated nanosheets and ionic polyacetylenes". Journal of Colloid and Interface Science. 297 (2): 654–659. Bibcode:2006JCIS..297..654P. doi:10.1016/j.jcis.2005.11.004. PMID 16364352.
  7. ^ a b Deniard-Courant, S (July 1988). "Relative humidity influence on the water content and on the protonic conductivity of the phosphatoantimonic acids HnSbnP2O3n+5, xH2O (n = 1, 3, 5)". Solid State Ionics. 27 (3): 189–194. doi:10.1016/0167-2738(88)90009-4.
  8. ^ a b c d e Wang, E.; Greenblatt, M. (1991-07-01). "Ionic conductivities of ion-exchanged alkali metal phosphatoantimonate (A2Sb3P2O14, A = sodium, potassium, rubidium), A5Sb5P2O20 (A =lithium, sodium, potassium, rubidium), and partially substituted potassium phosphatoantimonato niobate or potassium phosphatoantimonato tantalate (K5Sb5-xMxP2O20, M = niobium, tantalum)". Chemistry of Materials. 3 (4): 703–709. doi:10.1021/cm00016a026. ISSN 0897-4756.
  9. ^ a b c d Walko, Priyanka S.; Paidi, Anil Kumar; Vidyasagar, Kanamaluru (2017-12-11). "Syntheses and Structural Characterization of A 3 Sb 3 P 2 O 14 ⋅3H 2 O ( A =Rb, Cs, Tl and NH 4 ) Phosphates; Facile Aqueous Ion Exchange Reactions of K 3 Sb 3 P 2 O 14 ⋅3H 2 O". ChemistrySelect. 2 (35): 11875–11879. doi:10.1002/slct.201702401. ISSN 2365-6549.
  10. ^ Velchuri, Radha; Kadari, Ramaswamy; Ravi, Gundeboina; Munirathnam, Nagegownivari R.; Vithal, Muga (April 2015). "Effect of Cation/Anion Co-doping on the Photocatalytic Performance of Na 3 SbO(PO 4 ) 2". Zeitschrift für anorganische und allgemeine Chemie. 641 (5): 935–940. doi:10.1002/zaac.201400557. ISSN 0044-2313.
  11. ^ Guyomard, D.; Pagnoux, C.; Letho, J.J.Zah; Verbaere, A.; Piffard, Y. (February 1991). "Preparation and crystal structure of Na3SbO(PO4)2". Journal of Solid State Chemistry. 90 (2): 367–372. doi:10.1016/0022-4596(91)90154-A.
  12. ^ a b Aatiq, Abderrahim; Marchoud, Asmaa; Bellefqih, Hajar; Tigha, My Rachid (September 2017). "Structural and Raman spectroscopic studies of the two M 0.50 SbFe(PO 4 ) 3 ( M = Mg, Ni) NASICON phases". Powder Diffraction. 32 (S1): S40–S51. Bibcode:2017PDiff..32S..40A. doi:10.1017/S0885715617000331. ISSN 0885-7156.
  13. ^ a b c d e Husson, E.; Genet, F.; Lachgar, A.; Piffard, Y. (August 1988). "The vibrational spectra of some antimony phosphates". Journal of Solid State Chemistry. 75 (2): 305–312. Bibcode:1988JSSCh..75..305H. doi:10.1016/0022-4596(88)90171-5.
  14. ^ Piffard, Y.; Lachgar, A.; Tournoux, M. (June 1985). "Crystal structure of KSb2PO8". Materials Research Bulletin. 20 (6): 715–721. doi:10.1016/0025-5408(85)90150-3.
  15. ^ Ravi, G.; Sudhakar Reddy, Ch.; Sreenu, K.; Guje, Ravinder; Velchuri, Radha; Vithal, M. (April 2016). "Degradation of Methylene Blue and Rhodamine B Using a New Visible Light-Responsive Photocatalyst, KSb2PO8−x N y". Acta Metallurgica Sinica (English Letters). 29 (4): 335–343. doi:10.1007/s40195-016-0401-6. ISSN 1006-7191.
  16. ^ Piffard, Y.; Oyetola, S.; Courant, S.; Lachgar, A. (November 1985). "Crystal structure of KSbP2O8". Journal of Solid State Chemistry. 60 (2): 209–213. doi:10.1016/0022-4596(85)90114-8.
  17. ^ Lachgar, A.; Deniard-Courant, S.; Piffard, Y. (July 1986). "Preparation and crystal structure of K2SbPO6". Journal of Solid State Chemistry. 63 (3): 409–413. doi:10.1016/0022-4596(86)90198-2.
  18. ^ An, Yonglin; Feng, Shouhua; Xu, Yihua; Xu, Ruren; Yue, Yong (November 1994). "Hydrothermal synthesis and characterization of a new potassium phosphatoantimonate". Journal of Materials Research. 9 (11): 2745–2746. Bibcode:1994JMatR...9.2745A. doi:10.1557/JMR.1994.2745. ISSN 0884-2914.
  19. ^ An, Yonglin; Feng, Shouhua; Xu, Yihua; Xu, Ruren; Yue, Yong (1996-01-01). "Hydrothermal Synthesis and Characterization of a New Potassium Phosphatoantimonate, K 8 Sb 8 P 2 O 29 ·8H 2 O". Chemistry of Materials. 8 (2): 356–359. doi:10.1021/cm950182+. ISSN 0897-4756.
  20. ^ Piffard, Y.; Lachgar, A.; Tournoux, M. (July 1985). "Structure cristalline du phosphatoantimonate K3Sb3P2O14". Journal of Solid State Chemistry (in French). 58 (2): 253–256. doi:10.1016/0022-4596(85)90242-7.
  21. ^ Lachgar, A.; Deniard-Courant, S.; Piffard, Y. (April 1988). "Adsorption and structural studies of water in the layered compounds K3Sb3M2O14, xH2O (M = P, As)". Journal of Solid State Chemistry. 73 (2): 572–576. doi:10.1016/0022-4596(88)90147-8.
  22. ^ An, Yonglin; Feng, Shouhua; Xu, Yihua; Xu, Ruren; Yue, Yong (1995). "Hydrothermal synthesis and characterization of K 3 Sb 3 A 2 O 14 ·5H 2 O (A  P,As)". J. Mater. Chem. 5 (5): 773–776. doi:10.1039/JM9950500773. ISSN 0959-9428.
  23. ^ Piffard, Y.; Lachgar, A.; Tournoux, M. (October 1986). "A potassium phosphatoantimonate with a three dimensional framework : K5Sb5P2O20". Materials Research Bulletin. 21 (10): 1231–1238. doi:10.1016/0025-5408(86)90052-8.
  24. ^ Botto, I.L.; Garcia, A.C. (December 1989). "Crystallographic data and vibrational spectrum of K2SbAsO6". Materials Research Bulletin. 24 (12): 1431–1439. doi:10.1016/0025-5408(89)90153-0.
  25. ^ a b c Aatiq, Abderrahim; Tigha, My Rachid (September 2013). "Structural and spectroscopic study of NaSbR(PO 4 ) 3 (R = Cr, Fe, In) phases". Powder Diffraction. 28 (S2): S394–S408. Bibcode:2013PDiff..28S.394A. doi:10.1017/S0885715613000882. ISSN 0885-7156.
  26. ^ a b c d e Anantharamulu, Navulla; Rao, K. Koteswara; Vithal, M.; Prasad, G. (June 2009). "Preparation, characterization, impedance and thermal expansion studies of Mn0.5MSb(PO4)3 (M=Al, Fe and Cr)". Journal of Alloys and Compounds. 479 (1–2): 684–691. doi:10.1016/j.jallcom.2009.01.038.
  27. ^ a b c d e Aatiq, Abderrahim; Tigha, My Rachid; Benmokhtar, Said (February 2012). "Structure, infrared and Raman spectroscopic studies of new Sr0.50SbFe(PO4)3 and SrSb0.50Fe1.50(PO4)3 Nasicon phases". Journal of Materials Science. 47 (3): 1354–1364. Bibcode:2012JMatS..47.1354A. doi:10.1007/s10853-011-5910-0. ISSN 0022-2461.
  28. ^ a b Aatiq, Abderrahim; Hassine, Rabia; Tigha, My Rachid; Saadoune, Ismael (March 2005). "Structures of two newly synthesized A 0.50 SbFe(PO 4 ) 3 (A=Mn, Cd) Nasicon phases". Powder Diffraction. 20 (1): 33–39. doi:10.1154/1.1862252. ISSN 0885-7156.
  29. ^ a b Aatiq, Abderrahim; Bakri, Rachid (March 2007). "Crystal structures of newly synthesized Sb V 1.50 Fe III 0.50 (PO 4 ) 3 and (Sb V 0.50 Fe III 0.50 )P 2 O 7". Powder Diffraction. 22 (1): 47–54. doi:10.1154/1.2434788. ISSN 0885-7156.
  30. ^ a b Aatiq, Abderrahim; Tigha, My Rachid; Hassine, Rabia; Saadoune, Ismael (March 2006). "Crystallochemistry and structural studies of two newly CaSb 0.50 Fe 1.50 (PO 4 ) 3 and Ca 0.50 SbFe(PO 4 ) 3 Nasicon phases". Powder Diffraction. 21 (1): 45–51. doi:10.1154/1.2104535. ISSN 0885-7156.
  31. ^ a b c Bellefqih, Hajar; Fakhreddine, Rachid; Tigha, Rachid; Aatiq, Abderrahim (2020). "Structure, Infrared and Raman spectroscopic studies of new AII(SbV0.50CrIII0.50)(PO4)2 (A = Ba, Sr, Pb) yavapaiite phases". Mediterranean Journal of Chemistry. 10 (8): 734–743. doi:10.13171/mjc10802108201448hb. S2CID 225277143.
  32. ^ a b c Aatiq, Abderrahim; Tigha, My Rachid; Fakhreddine, Rachid; Bregiroux, Damien; Wallez, Gilles (August 2016). "Structure, infrared and Raman spectroscopic studies of newly synthetic AII(SbV0.50FeIII0.50)(PO4)2 (ABa, Sr, Pb) phosphates with yavapaiite structure". Solid State Sciences. 58: 44–54. doi:10.1016/j.solidstatesciences.2016.05.009.
  33. ^ a b c Fakhreddine, Rachid; Ouasri, Ali; Aatiq, Abderrahim (January 2024). "Synthesis, structural, morphology, spectroscopic and optical study of new metal orthophosphate MII(Ga0.5Sb0.5)(PO4)2 (MII= Sr, Pb, Ba) compounds". Journal of Solid State Chemistry. 329: 124439. doi:10.1016/j.jssc.2023.124439.
  34. ^ a b Aatiq, Abderrahim; Bakri, Rachid; Sakulich, Aaron Richard (September 2008). "Preparation and crystal structure of Sb V 1.50 In III 0.50 (PO 4 ) 3 and (Sb V 0.50 In III 0.50 )P 2 O 7". Powder Diffraction. 23 (3): 232–240. doi:10.1154/1.2955583. ISSN 0885-7156.
  35. ^ a b Zhang, Wei-Long; Guo, Zhen-Gang; Guan, Xiang-Feng; Chen, Chinghwa; He, Jiangang; Luo, Pei-Hui; Li, Xiao-Yan; Ding, Feng-Hua; Cheng, Wen-Dan (2019-05-27). "Unique 3D framework formed by adding M II O 4 groups into high Sb/P ratio phosphatoantimonates". Zeitschrift für Kristallographie - Crystalline Materials. 234 (5): 301–306. doi:10.1515/zkri-2018-2137. ISSN 2196-7105.
  36. ^ a b Pagnoux, C.; Mar, A.; Verbaere, A.; Piffard, Y. (February 1995). "Synthesis and Structure of K2xBa2-xSb4O9(PO4)2 (0 < x < 0.4)". Journal of Solid State Chemistry. 114 (2): 399–405. doi:10.1006/jssc.1995.1061.
  37. ^ a b c d Bellefqih, H.; Bilal, E.; Fakhreddine, R.; Mehdaoui, B.; Haneklaus, N.; Aatiq, A. (May 2024). "Structural, vibrational, and optical studies of newly synthesized Yavapaiite-type phases BaSb2/3X1/3(PO4)2 (X = Mn, Co, Cu, Zn)". Inorganic Chemistry Communications. 163: 112347. doi:10.1016/j.inoche.2024.112347.
  38. ^ a b "Structure and spectroscopic characterization of the two PbSb0.5Fe1.5(PO4)3 and Pb0.5SbFe(PO4)3 phosphates with Nasicon type-structure". J. Mater. Environ. Sci. 6 (12): 3483–3490. 2015.
  39. ^ Aatiq, Abderrahim; Tigha, My Rachid (March 2014). "Structure of a new Ca II 1/3 Sb V 1/6 Bi III 1/2 PO 4 phosphate". Powder Diffraction. 29 (1): 14–19. Bibcode:2014PDiff..29...14A. doi:10.1017/S0885715613000717. ISSN 0885-7156.