Jump to content

Petersen–Morley theorem

From Wikipedia, the free encyclopedia

In geometry, the Petersen–Morley theorem states that, if a, b, c are three general skew lines in space, if a, b, c are the lines of shortest distance respectively for the pairs (b,c), (c,a) and (a,b), and if p, q and r are the lines of shortest distance respectively for the pairs (a,a), (b,b) and (c,c), then there is a single line meeting at right angles all of p, q, and r.

The theorem is named after Johannes Hjelmslev (who published his work on this result under his original name Johannes Trolle Petersen) and Frank Morley.

References

[edit]
  • Morley, F. (1897). "On a regular rectangular configuration of ten lines". Proceedings of the London Mathematical Society. 29 (1): 670–673. doi:10.1112/plms/s1-29.1.670.
  • Petersen, Johannes (1898). "Nouveau principe pour études de géométrie des droites". Oversigt over det Kongelige Danske Videnskabernes Forhandlinger: 283–344.
  • Lyons, R. J.; Frith, R. (1934). "The Petersen–Morley Theorem I". Mathematical Proceedings of the Cambridge Philosophical Society. 30 (2): 192–196. doi:10.1017/S0305004100016601.
  • Baker, H. F. (1935). "Verification of the Petersen–Morley Theorem". Proceedings of the London Mathematical Society. 11 (1): 24–26. doi:10.1112/jlms/s1-11.1.24.