Jump to content

Pentaethylenehexamine

From Wikipedia, the free encyclopedia
Pentaethylenehexamine
Names
IUPAC name
N′-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine
Other names
1,4,7,10,13,16-Hexaazahexadecane[1]
Pentaethylenehexaamine
3,6,9,12-Tetra-azatetradecamethylenediamine
Identifiers
3D model (JSmol)
Abbreviations PEHA
ChEMBL
ChemSpider
ECHA InfoCard 100.021.615 Edit this at Wikidata
EC Number
  • 223-775-9
UNII
UN number 2735
  • InChI=1S/C10H28N6/c11-1-3-13-5-7-15-9-10-16-8-6-14-4-2-12/h13-16H,1-12H2
    Key: LSHROXHEILXKHM-UHFFFAOYSA-N
  • NCCNCCNCCNCCNCCN
Properties
C10H28N6
Molar mass 232.376 g·mol−1
Appearance yellowish liquid
Odor ammonia like
Density 1
Boiling point 136–144 °C (277–291 °F; 409–417 K) 0.15 mm/Hg[2]
Hazards
GHS labelling:
GHS05: CorrosiveGHS07: Exclamation markGHS09: Environmental hazard
Danger
H314, H317, H410
P260, P261, P264, P272, P273, P280, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P333+P313, P363, P391, P405, P501
360 °C; 680 °F; 633 K
Related compounds
Related compounds
Tetraethylenepentamine TEPA
Triethylenetetramine TETA
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pentaethylenehexamine (abbreviated PEHA) is a organic amine. It is composed of five ethylene groups -CH2CH2- joined together in a chain by four secondary amine groups (-NH-) and terminated on each end by primary amine groups (-NH2). Pentaethylenehexamine is a hexadentate ligand, owing to the Lewis basicity of the six amine groups.[3] Pentaethylenehexamine is in the category of polyethyleneamines and is part of mixtures of these sold commercially.[2]

Commercial supplies of pentaethylenehexamine contain, in addition to the linear form, branched and cyclic polyamines.[2] As an amine, it is an organic base and can form ammonium salts by reaction with various acids. Salts with counter-anions such as chloride, sulfate, nitrate, naphthalene-2-sulfonate, and tosylate. Tosylate salts can be used to separate the linear molecule from the other forms, as it is less soluble.[2]

Properties

[edit]

The infrared spectrum of pentaethylenehexamine salts show characteristics of the ammonium present. It has stretching modes, asymmetric and symmetric bending modes, but most useful absorption bands are due to rocking mode, where -NH3+ is at 810 cm−1 and -NH2+- is at 768 cm−1.[2]

Reactions

[edit]

Pentaethylenehexamine undergoes an Eschweiler–Clarke reaction with formaldehyde and formic acid to substitute all of the amine hydrogen atoms with methyl groups, giving octamethylpentaethylenehexamine (OMPEHA).[4]

Pentaethylenehexamine can rearrange to form N,N′-bis(2-aminoethyl)piperazine-1,4-diethylamine.[5]

Ligand

[edit]

As a ligand pentaethylenehexamine is abbreviated peha or PEHA.[6] It is a strong field ligand.[7] It can coordinate cobalt,[8] nickel,[9] copper, zinc,[10] cadmium[5] lanthanum,[11] neodymium,[3] europium, samarium,[12] lead,[10] thorium, or uranium.[13]

Use

[edit]

Pentaethylenehexamine is used in ion exchange resins, eg Lewatit 6718 HLH.[14]

Pentaethylenehexamine has been investigated as a component in carbon dioxide capture, including direct from the air for conversion to methanol.[15]

References

[edit]
  1. ^ "PENTAETHYLENEHEXAMINE | CAMEO Chemicals | NOAA". cameochemicals.noaa.gov.
  2. ^ a b c d e Stapleton, Iw (1985). "A simple method of polyamine purification". Australian Journal of Chemistry. 38 (4): 633. doi:10.1071/CH9850633.
  3. ^ a b Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian (October 2015). "Complexations of Ln(III) with SnS4H and Sn2S6: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands". Journal of Solid State Chemistry. 230: 118–125. Bibcode:2015JSSCh.230..118T. doi:10.1016/j.jssc.2015.06.008.
  4. ^ Faucher, Santiago; Okrutny, Paul; Zhu, Shiping (1 January 2006). "Facile and Effective Purification of Polymers Produced by Atom Transfer Radical Polymerization via Simple Catalyst Precipitation and Microfiltration". Macromolecules. 39 (1): 3–5. Bibcode:2006MaMol..39....3F. doi:10.1021/ma051920a.
  5. ^ a b Satapathi, Smita; Choubey, Somnath; Bhar, Kishalay; Chattopadhyay, Soumi; Mitra, Partha; Slawin, Alexandra M.Z.; Ghosh, Barindra K. (April 2012). "A set of new coordination compounds of cadmium(II)/mercury(II) halides/pseudohalides containing polyamines: Syntheses involving in situ metal–ligand reactions, crystal structures and molecular properties". Inorganica Chimica Acta. 384: 37–46. doi:10.1016/j.ica.2011.11.022.
  6. ^ Sulistyarti, Hermin; Kolev, Spas D. (July 2013). "Online ligand exchange in the determination of weak acid dissociable cyanide by gas diffusion-flow injection analysis". Microchemical Journal. 111: 103–107. doi:10.1016/j.microc.2013.01.008.
  7. ^ Wang, Cheng-Chien; Wang, Chun-Chih (15 September 2005). "Synthesis and characterization of chelating resins with amino moieties and application on removal of copper(II) from EDTA complexes". Journal of Applied Polymer Science. 97 (6): 2457–2468. doi:10.1002/app.22019.
  8. ^ Han, Jingyu; Liu, Yun; Tang, Chunying; Shen, Yali; Lu, Jialin; Zhang, Yong; Jia, Dingxian (April 2016). "Thioarsenate anions acting as ligands: Solvothermal syntheses, crystal structures and characterizations of transition metal complexes of thioarsenate and polyethyleneamine ligands". Inorganica Chimica Acta. 444: 36–42. doi:10.1016/j.ica.2016.01.027.
  9. ^ Pienack, Nicole; Lühmann, Henning; Seidlhofer, Beatrix; Ammermann, Janina; Zeisler, Christoph; Danker, Felix; Näther, Christian; Bensch, Wolfgang (July 2014). "Six new tin–sulfur containing compounds obtained under solvothermal conditions". Solid State Sciences. 33: 67–72. Bibcode:2014SSSci..33...67P. doi:10.1016/j.solidstatesciences.2014.04.014.
  10. ^ a b Hadioui, Madjid; Mecherri, Med; Šípoš, Rastislav; Yvon, Yan; Sharrock, Patrick (1 January 2011). "Polyamine-substituted epoxy-grafted silica for aqueous metal recovery". Chemical Papers. 65 (6). doi:10.2478/s11696-011-0067-5. S2CID 96742684.
  11. ^ Liu, Shuzhen; Sun, Peipei; Shen, Yali; Han, Jingyu; Sun, Hui; Jia, Dingxian (1 April 2017). "Lanthanide(III) complexes with μ-SnSe4 and μ-Sn2Se6 linkers: solvothermal syntheses and properties of new Ln(III) selenidostannates decorated with linear polyamine". Zeitschrift für Naturforschung B. 72 (4): 231–240. doi:10.1515/znb-2016-0236. S2CID 199060493.
  12. ^ Liu, Yun; Tang, Chunying; Han, Jingyu; Shen, Yali; Lu, Jialin; Jia, Dingxian (October 2015). "The first lanthanide–tetraselenidoantimonate complexes with hexadentate polyamine co-ligand: Solvothermal syntheses of [Sm(peha)(SbSe4)]n and [Eu(peha)(SbSe4)]". Inorganic Chemistry Communications. 60: 103–106. doi:10.1016/j.inoche.2015.08.005.
  13. ^ Sadeek, Sadeek A.; Moussa, Ewais M. M.; El-Sayed, Mohamed A.; Amine, Maisa M.; Abd El-Magied, Mahmoud O. (3 July 2014). "Uranium(VI) and Thorium(IV) Adsorption Studies on Chelating Resin Containing Pentaethylenehexamine as a Functional Group". Journal of Dispersion Science and Technology. 35 (7): 926–933. doi:10.1080/01932691.2013.809507. S2CID 95983729.
  14. ^ Parschová, Helena; Mištová, Eva; Jelínek, Luděk (July 6–9, 2008). Removal of heavy metals from strong anionic complexes (PDF). XXIII International Symposium on Physico-Chemical Methods of Separation. Toruń, Poland. pp. 147–150. Retrieved 25 September 2021.
  15. ^ Kothandaraman, Jotheeswari; Goeppert, Alain; Czaun, Miklos; Olah, George A.; Prakash, G. K. Surya (27 January 2016). "Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst". Journal of the American Chemical Society. 138 (3): 778–781. doi:10.1021/jacs.5b12354. PMID 26713663.