The first five layers of Pascal's 3-simplex (Pascal's pyramid ). Each face (orange grid) is Pascal's 2-simplex (Pascal's triangle ). Arrows show derivation of two example terms.
In mathematics , Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions , based on the multinomial theorem .
Generic Pascal's m -simplex[ edit ]
Let m (m > 0 ) be a number of terms of a polynomial and n (n ≥ 0 ) be a power the polynomial is raised to.
Let
∧
{\displaystyle \wedge }
m denote a Pascal's m -simplex . Each Pascal's m -simplex is a semi-infinite object, which consists of an infinite series of its components.
Let
∧
{\displaystyle \wedge }
m n denote its n th component, itself a finite (m − 1) -simplex with the edge length n , with a notational equivalent
△
n
m
−
1
{\displaystyle \vartriangle _{n}^{m-1}}
.
∧
n
m
=
△
n
m
−
1
{\displaystyle \wedge _{n}^{m}=\vartriangle _{n}^{m-1}}
consists of the coefficients of multinomial expansion of a polynomial with m terms raised to the power of n :
|
x
|
n
=
∑
|
k
|
=
n
(
n
k
)
x
k
;
x
∈
R
m
,
k
∈
N
0
m
,
n
∈
N
0
,
m
∈
N
{\displaystyle |x|^{n}=\sum _{|k|=n}{{\binom {n}{k}}x^{k}};\ \ x\in \mathbb {R} ^{m},\ k\in \mathbb {N} _{0}^{m},\ n\in \mathbb {N} _{0},\ m\in \mathbb {N} }
where
|
x
|
=
∑
i
=
1
m
x
i
,
|
k
|
=
∑
i
=
1
m
k
i
,
x
k
=
∏
i
=
1
m
x
i
k
i
{\displaystyle \textstyle |x|=\sum _{i=1}^{m}{x_{i}},\ |k|=\sum _{i=1}^{m}{k_{i}},\ x^{k}=\prod _{i=1}^{m}{x_{i}^{k_{i}}}}
.
Pascal's 4-simplex (sequence A189225 in the OEIS ), sliced along the k 4 . All points of the same color belong to the same n th component, from red (for n = 0 ) to blue (for n = 3 ).
Specific Pascal's simplices[ edit ]
∧
{\displaystyle \wedge }
1 is not known by any special name.
∧
n
1
=
△
n
0
{\displaystyle \wedge _{n}^{1}=\vartriangle _{n}^{0}}
(a point) is the coefficient of multinomial expansion of a polynomial with 1 term raised to the power of n :
(
x
1
)
n
=
∑
k
1
=
n
(
n
k
1
)
x
1
k
1
;
k
1
,
n
∈
N
0
{\displaystyle (x_{1})^{n}=\sum _{k_{1}=n}{n \choose k_{1}}x_{1}^{k_{1}};\ \ k_{1},n\in \mathbb {N} _{0}}
Arrangement of
△
n
0
{\displaystyle \vartriangle _{n}^{0}}
[ edit ]
(
n
n
)
{\displaystyle \textstyle {n \choose n}}
which equals 1 for all n .
∧
2
{\displaystyle \wedge ^{2}}
is known as Pascal's triangle (sequence A007318 in the OEIS ).
∧
n
2
=
△
n
1
{\displaystyle \wedge _{n}^{2}=\vartriangle _{n}^{1}}
(a line) consists of the coefficients of binomial expansion of a polynomial with 2 terms raised to the power of n :
(
x
1
+
x
2
)
n
=
∑
k
1
+
k
2
=
n
(
n
k
1
,
k
2
)
x
1
k
1
x
2
k
2
;
k
1
,
k
2
,
n
∈
N
0
{\displaystyle (x_{1}+x_{2})^{n}=\sum _{k_{1}+k_{2}=n}{n \choose k_{1},k_{2}}x_{1}^{k_{1}}x_{2}^{k_{2}};\ \ k_{1},k_{2},n\in \mathbb {N} _{0}}
Arrangement of
△
n
1
{\displaystyle \vartriangle _{n}^{1}}
[ edit ]
(
n
n
,
0
)
,
(
n
n
−
1
,
1
)
,
⋯
,
(
n
1
,
n
−
1
)
,
(
n
0
,
n
)
{\displaystyle \textstyle {n \choose n,0},{n \choose n-1,1},\cdots ,{n \choose 1,n-1},{n \choose 0,n}}
∧
3
{\displaystyle \wedge ^{3}}
is known as Pascal's tetrahedron (sequence A046816 in the OEIS ).
∧
n
3
=
△
n
2
{\displaystyle \wedge _{n}^{3}=\vartriangle _{n}^{2}}
(a triangle) consists of the coefficients of trinomial expansion of a polynomial with 3 terms raised to the power of n :
(
x
1
+
x
2
+
x
3
)
n
=
∑
k
1
+
k
2
+
k
3
=
n
(
n
k
1
,
k
2
,
k
3
)
x
1
k
1
x
2
k
2
x
3
k
3
;
k
1
,
k
2
,
k
3
,
n
∈
N
0
{\displaystyle (x_{1}+x_{2}+x_{3})^{n}=\sum _{k_{1}+k_{2}+k_{3}=n}{n \choose k_{1},k_{2},k_{3}}x_{1}^{k_{1}}x_{2}^{k_{2}}x_{3}^{k_{3}};\ \ k_{1},k_{2},k_{3},n\in \mathbb {N} _{0}}
Arrangement of
△
n
2
{\displaystyle \vartriangle _{n}^{2}}
[ edit ]
(
n
n
,
0
,
0
)
,
(
n
n
−
1
,
1
,
0
)
,
⋯
⋯
,
(
n
1
,
n
−
1
,
0
)
,
(
n
0
,
n
,
0
)
(
n
n
−
1
,
0
,
1
)
,
(
n
n
−
2
,
1
,
1
)
,
⋯
⋯
,
(
n
0
,
n
−
1
,
1
)
⋮
(
n
1
,
0
,
n
−
1
)
,
(
n
0
,
1
,
n
−
1
)
(
n
0
,
0
,
n
)
{\displaystyle {\begin{aligned}\textstyle {n \choose n,0,0}&,\textstyle {n \choose n-1,1,0},\cdots \cdots ,{n \choose 1,n-1,0},{n \choose 0,n,0}\\\textstyle {n \choose n-1,0,1}&,\textstyle {n \choose n-2,1,1},\cdots \cdots ,{n \choose 0,n-1,1}\\&\vdots \\\textstyle {n \choose 1,0,n-1}&,\textstyle {n \choose 0,1,n-1}\\\textstyle {n \choose 0,0,n}\end{aligned}}}
Inheritance of components [ edit ]
∧
n
m
=
△
n
m
−
1
{\displaystyle \wedge _{n}^{m}=\vartriangle _{n}^{m-1}}
is numerically equal to each (m − 1) -face (there is m + 1 of them) of
△
n
m
=
∧
n
m
+
1
{\displaystyle \vartriangle _{n}^{m}=\wedge _{n}^{m+1}}
, or:
∧
n
m
=
△
n
m
−
1
⊂
△
n
m
=
∧
n
m
+
1
{\displaystyle \wedge _{n}^{m}=\vartriangle _{n}^{m-1}\subset \ \vartriangle _{n}^{m}=\wedge _{n}^{m+1}}
From this follows, that the whole
∧
m
{\displaystyle \wedge ^{m}}
is (m + 1) -times included in
∧
m
+
1
{\displaystyle \wedge ^{m+1}}
, or:
∧
m
⊂
∧
m
+
1
{\displaystyle \wedge ^{m}\subset \wedge ^{m+1}}
∧
1
{\displaystyle \wedge ^{1}}
∧
2
{\displaystyle \wedge ^{2}}
∧
3
{\displaystyle \wedge ^{3}}
∧
4
{\displaystyle \wedge ^{4}}
∧
0
m
{\displaystyle \wedge _{0}^{m}}
1
1
1
1
∧
1
m
{\displaystyle \wedge _{1}^{m}}
1
1 1
1 1
1
1 1 1
1
∧
2
m
{\displaystyle \wedge _{2}^{m}}
1
1 2 1
1 2 1
2 2
1
1 2 1 2 2 1
2 2 2
1
∧
3
m
{\displaystyle \wedge _{3}^{m}}
1
1 3 3 1
1 3 3 1
3 6 3
3 3
1
1 3 3 1 3 6 3 3 3 1
3 6 3 6 6 3
3 3 3
1
For more terms in the above array refer to (sequence A191358 in the OEIS )
Equality of sub-faces [ edit ]
Conversely,
∧
n
m
+
1
=
△
n
m
{\displaystyle \wedge _{n}^{m+1}=\vartriangle _{n}^{m}}
is (m + 1) -times bounded by
△
n
m
−
1
=
∧
n
m
{\displaystyle \vartriangle _{n}^{m-1}=\wedge _{n}^{m}}
, or:
∧
n
m
+
1
=
△
n
m
⊃
△
n
m
−
1
=
∧
n
m
{\displaystyle \wedge _{n}^{m+1}=\vartriangle _{n}^{m}\supset \vartriangle _{n}^{m-1}=\wedge _{n}^{m}}
From this follows, that for given n , all i -faces are numerically equal in n th components of all Pascal's (m > i )-simplices, or:
∧
n
i
+
1
=
△
n
i
⊂
△
n
m
>
i
=
∧
n
m
>
i
+
1
{\displaystyle \wedge _{n}^{i+1}=\vartriangle _{n}^{i}\subset \vartriangle _{n}^{m>i}=\wedge _{n}^{m>i+1}}
The 3rd component (2-simplex) of Pascal's 3-simplex is bounded by 3 equal 1-faces (lines). Each 1-face (line) is bounded by 2 equal 0-faces (vertices):
2-simplex 1-faces of 2-simplex 0-faces of 1-face
1 3 3 1 1 . . . . . . 1 1 3 3 1 1 . . . . . . 1
3 6 3 3 . . . . 3 . . .
3 3 3 . . 3 . .
1 1 1 .
Also, for all m and all n :
1
=
∧
n
1
=
△
n
0
⊂
△
n
m
−
1
=
∧
n
m
{\displaystyle 1=\wedge _{n}^{1}=\vartriangle _{n}^{0}\subset \vartriangle _{n}^{m-1}=\wedge _{n}^{m}}
Number of coefficients [ edit ]
For the n th component ((m − 1) -simplex) of Pascal's m -simplex, the number of the coefficients of multinomial expansion it consists of is given by:
(
(
n
−
1
)
+
(
m
−
1
)
(
m
−
1
)
)
+
(
n
+
(
m
−
2
)
(
m
−
2
)
)
=
(
n
+
(
m
−
1
)
(
m
−
1
)
)
=
(
(
m
n
)
)
,
{\displaystyle {(n-1)+(m-1) \choose (m-1)}+{n+(m-2) \choose (m-2)}={n+(m-1) \choose (m-1)}=\left(\!\!{\binom {m}{n}}\!\!\right),}
(where the latter is the multichoose notation). We can see this either as a sum of the number of coefficients of an (n − 1) th component ((m − 1) -simplex) of Pascal's m -simplex with the number of coefficients of an n th component ((m − 2) -simplex) of Pascal's (m − 1) -simplex, or by a number of all possible partitions of an n th power among m exponents.
Number of coefficients of n th component ((m − 1) -simplex) of Pascal's m -simplex
m-simplex
n th component
n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
1-simplex
0-simplex
1
1
1
1
1
1
2-simplex
1-simplex
1
2
3
4
5
6
3-simplex
2-simplex
1
3
6
10
15
21
4-simplex
3-simplex
1
4
10
20
35
56
5-simplex
4-simplex
1
5
15
35
70
126
6-simplex
5-simplex
1
6
21
56
126
252
The terms of this table comprise a Pascal triangle in the format of a symmetric Pascal matrix .
An n th component ((m − 1) -simplex) of Pascal's m -simplex has the (m !)-fold spatial symmetry.
Orthogonal axes k 1 , ..., k m in m -dimensional space, vertices of component at n on each axis, the tip at [0, ..., 0] for n = 0 .
Numeric construction [ edit ]
Wrapped n th power of a big number gives instantly the n th component of a Pascal's simplex.
|
b
d
p
|
n
=
∑
|
k
|
=
n
(
n
k
)
b
d
p
⋅
k
;
b
,
d
∈
N
,
n
∈
N
0
,
k
,
p
∈
N
0
m
,
p
:
p
1
=
0
,
p
i
=
(
n
+
1
)
i
−
2
{\displaystyle \left|b^{dp}\right|^{n}=\sum _{|k|=n}{{\binom {n}{k}}b^{dp\cdot k}};\ \ b,d\in \mathbb {N} ,\ n\in \mathbb {N} _{0},\ k,p\in \mathbb {N} _{0}^{m},\ p:\ p_{1}=0,p_{i}=(n+1)^{i-2}}
where
b
d
p
=
(
b
d
p
1
,
⋯
,
b
d
p
m
)
∈
N
m
,
p
⋅
k
=
∑
i
=
1
m
p
i
k
i
∈
N
0
{\displaystyle \textstyle b^{dp}=(b^{dp_{1}},\cdots ,b^{dp_{m}})\in \mathbb {N} ^{m},\ p\cdot k={\sum _{i=1}^{m}{p_{i}k_{i}}}\in \mathbb {N} _{0}}
.