From Wikipedia, the free encyclopedia
Variation of the Ricci tensor with respect to the metric.
In general relativity and tensor calculus, the Palatini identity is
where denotes the variation of Christoffel symbols and indicates covariant differentiation.[1]
The "same" identity holds for the Lie derivative . In fact, one has
where denotes any vector field on the spacetime manifold .
The Riemann curvature tensor is defined in terms of the Levi-Civita connection as
- .
Its variation is
- .
While the connection is not a tensor, the difference between two connections is, so we can take its covariant derivative
- .
Solving this equation for and substituting the result in , all the -like terms cancel, leaving only
- .
Finally, the variation of the Ricci curvature tensor follows by contracting two indices, proving the identity
- .
- Palatini, Attilio (1919), "Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton" [Invariant deduction of the gravitanional equations from the principle of Hamilton], Rendiconti del Circolo Matematico di Palermo, 1 (in Italian), 43: 203–212, doi:10.1007/BF03014670, S2CID 121043319 [English translation by R. Hojman and C. Mukku in P. G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980)]
- Tsamparlis, Michael (1978), "On the Palatini method of Variation", Journal of Mathematical Physics, 19 (3): 555–557, Bibcode:1978JMP....19..555T, doi:10.1063/1.523699