Jump to content

Oka coherence theorem

From Wikipedia, the free encyclopedia

In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka (1950), states that the sheaf of holomorphic functions on (and subsequently the sheaf of holomorphic functions on a complex manifold ) is coherent.[1][2]

See also

[edit]

Note

[edit]

References

[edit]
  • Grauert, H.; Remmert, R. (6 December 2012). Coherent Analytic Sheaves. Springer. ISBN 978-3-642-69582-7.
  • Hörmander, Lars (1990), An introduction to complex analysis in several variables, Amsterdam: North-Holland, ISBN 978-0-444-88446-6, MR 0344507
  • Noguchi, Junjiro (2019), "A Weak Coherence Theorem and Remarks to the Oka Theory" (PDF), Kodai Math. J., 42 (3): 566–586, arXiv:1704.07726, doi:10.2996/kmj/1572487232, S2CID 119697608
  • Oka, Kiyoshi (1950), "Sur les fonctions analytiques de plusieurs variables. VII. Sur quelques notions arithmétiques", Bulletin de la Société Mathématique de France, 78: 1–27, doi:10.24033/bsmf.1408, ISSN 0037-9484, MR 0035831
  • Onishchik, A.L. (2001) [1994], "Coherent analytic sheaf", Encyclopedia of Mathematics, EMS Press