Oka coherence theorem
Appearance
In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka (1950), states that the sheaf of holomorphic functions on (and subsequently the sheaf of holomorphic functions on a complex manifold ) is coherent.[1][2]
See also
[edit]- Cartan's theorems A and B
- Several complex variables
- GAGA
- Oka–Weil theorem
- Weierstrass preparation theorem
Note
[edit]- ^ Noguchi (2019)
- ^ In Oka (1950) paper it was called the idéal de domaines indéterminés.
References
[edit]- Grauert, H.; Remmert, R. (6 December 2012). Coherent Analytic Sheaves. Springer. ISBN 978-3-642-69582-7.
- Hörmander, Lars (1990), An introduction to complex analysis in several variables, Amsterdam: North-Holland, ISBN 978-0-444-88446-6, MR 0344507
- Noguchi, Junjiro (2019), "A Weak Coherence Theorem and Remarks to the Oka Theory" (PDF), Kodai Math. J., 42 (3): 566–586, arXiv:1704.07726, doi:10.2996/kmj/1572487232, S2CID 119697608
- Oka, Kiyoshi (1950), "Sur les fonctions analytiques de plusieurs variables. VII. Sur quelques notions arithmétiques", Bulletin de la Société Mathématique de France, 78: 1–27, doi:10.24033/bsmf.1408, ISSN 0037-9484, MR 0035831
- Onishchik, A.L. (2001) [1994], "Coherent analytic sheaf", Encyclopedia of Mathematics, EMS Press