Jump to content

Natural element method

From Wikipedia, the free encyclopedia
20 points and their Voronoi cells

The natural element method (NEM)[1][2][3] is a meshless method to solve partial differential equation, where the elements do not have a predefined shape as in the finite element method, but depend on the geometry.[4][5][6]

A Voronoi diagram partitioning the space is used to create each of these elements.

Natural neighbor interpolation functions are then used to model the unknown function within each element.

Applications

[edit]

When the simulation is dynamic, this method prevents the elements to be ill-formed, having the possibility to easily redefine them at each time step depending on the geometry.

References

[edit]
  1. ^ Sukumar, N.; Moran, B.; Belytschko, T. (21 June 1998). "The natural element method in solid mechanics". International Journal for Numerical Methods in Engineering. 43 (5): 839–887. Bibcode:1998IJNME..43..839S. doi:10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R.
  2. ^ J. Yvonnet; D. Ryckelynck; P. Lorong; F. Chinesta (2004). "A new extension of the natural element method for non-convex and discontinuous problems: the constrained natural element method (C-NEM)" (PDF). International Journal for Numerical Methods in Engineering. 60 (8): 1451–1474. Bibcode:2004IJNME..60.1451Y. doi:10.1002/nme.1016. S2CID 122887431.
  3. ^ Lee, Hw; Cho, Jr (April 2019). "Large deformation analysis of elastic bodies by nonlinear Petrov–Galerkin natural element method". Advances in Mechanical Engineering. 11 (4): 168781401984629. doi:10.1177/1687814019846293.
  4. ^ Lu, Ping; Shu, Yang; Lu, Dahai; Jiang, Kaiyong; Liu, Bin; Huang, Changbiao (2017). "Research on Natural Element Method and the application to simulate metal forming processes". Procedia Engineering. 207: 1087–1092. doi:10.1016/j.proeng.2017.10.1135.
  5. ^ "What is the difference between nem (natural element method) and cnem (constrained natural element method)?". ResearchGate. Retrieved 2019-07-15.[unreliable source?]
  6. ^ Botelho, D. P.; Marechal, Y.; Ramdane, B. (November 2016). "Vector interpolation on natural element method: Mesh sensitivity analysis". 2016 IEEE Conference on Electromagnetic Field Computation (CEFC). Institute of Electrical and Electronics Engineers. p. 1. doi:10.1109/CEFC.2016.7816353. ISBN 978-1-5090-1032-5. S2CID 27851390.