Jump to content

NanoAndMore

From Wikipedia, the free encyclopedia
NanoAndMore
Company typePrivate
IndustryNanotechnology
Founded2002 (Europe), 2005 (USA), 2019 (Japan)
HeadquartersWetzlar, Germany
Watsonville, California, USA
Misato, Japan
Number of locations
3
Area served
North America, South America, Europe, Japan
Key people
Peer A. Burshille
(Founder & CEO)
Nicholas Schacher
(CEO)
Nobuhiro Saito
(Representative Director)
ProductsAFM Probes from
NanoWorld
Nanosensors
BudgetSensors
MikroMasch
Opus
nanotools
OwnerNanoWorld Holding AG, Switzerland
SubsidiariesNanoAndMore GmbH, Germany
NanoAndMore USA Inc., USA
Nano And More Japan Co., Ltd., Japan
Websitewww.nanoandmore.com,www.nanoandmore.jp

NanoAndMore[1] is a distributor for AFM cantilevers from NanoWorld, Nanosensors, BudgetSensors, MikroMasch, Opus and nanotools, calibration standards and other products for nanotechnology.

History

[edit]

NanoAndMore was founded in Germany in 2002[2] and started operating in the US in 2005. In 2005, NanoWorld Holding AG from Schaffhausen, Switzerland, acquired and integrated NanoAndMore into the NanoWorld group composed of Nanotechnology companies. The world market leader in AFM probes, NanoWorld has appointed NanoAndMore as the official distributor for NanoWorld and Nanosensors products.[3]

NanoAndMore GmbH is operating from a location in Wetzlar, Germany - serving the European market. NanoAndMore USA is serving the North and South American markets. From 2005 to 2015, NanoAndMore USA was operating from Lady's Island (South Carolina), United States.[4] In 2015, NanoAndMore USA moved to Watsonville, California, United States. NanoAndMore Japan was founded in 2019 and is serving Japan and operating from Misato in Saitama.

Products

[edit]

AFM probes and accessories distributed by NanoAndMore are used for Atomic Force Microscopy in material science,[5][6][7] physics,[8][9][10] biology,[11] life sciences[12][13] and in semiconductor industry.

AFM probes sold by NanoAndMore fit all common Atomic Force Microscopes (AFM) like Asylum Research, Bruker, JPK, Molecular Imaging, Nanosurf, Veeco, WiTEK, NTMDT, Novascan, etc. As an important distributor of AFM probes it is often cited as a supplier in research papers and is therefore considered an important source of products for Atomic Force Microscopy.[14][15]

References

[edit]
  1. ^ Stefanov, Y.; Ruland, T.; Schwalke, U. (2011). "Electrical AFM Measurements for Evaluation of Nitride Erosion in Shallow Trench Isolation Chemical Mechanical Planarization". MRS Proceedings. 838. doi:10.1557/PROC-838-O10.5.
  2. ^ "German Handelsregister - NanoAndMore". Retrieved November 23, 2022.
  3. ^ www.nanotech-now.com (1 November 2005). "NanoWorld AG appoints NanoAndMore USA Corp". Retrieved 17 January 2012.
  4. ^ "Beaufort's NanoandMore USA One of Three National Finalists in FedEx's Small Business Competition". 12 October 2011. Retrieved 17 January 2012.
  5. ^ Martin, P.; Marsaudon, S.; Aimé, J. P.; Bennetau, B. (2005). "Experimental determination of conservative and dissipative parts in the tapping mode on a grafted layer: Comparison with frequency modulation data". Nanotechnology. 16 (6): 901. Bibcode:2005Nanot..16..901M. doi:10.1088/0957-4484/16/6/046.
  6. ^ Taubert, A.; Arbell, I.; Mecke, A.; Graf, P. (2006). "Photoreduction of a crystalline Au(III) complex: A solidstate approach to metallic nanostructures". Gold Bulletin. 39 (4): 205. doi:10.1007/BF03215555.
  7. ^ Toset, J.; Gomila, G. (2010). "Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces". Applied Physics Letters. 96 (4): 043117. Bibcode:2010ApPhL..96d3117T. doi:10.1063/1.3297903.
  8. ^ Hoogenboom, B. W.; Frederix, P. L. T. M.; Fotiadis, D.; Hug, H. J.; Engel, A. (2008). "Potential of interferometric cantilever detection and its application for SFM/AFM in liquids". Nanotechnology. 19 (38): 384019. Bibcode:2008Nanot..19L4019H. doi:10.1088/0957-4484/19/38/384019. PMID 21832578.
  9. ^ Klapetek, P.; Valtr, M.; Nečas, D.; Salyk, O.; Dzik, P. (2011). "Atomic force microscopy analysis of nanoparticles in non-ideal conditions". Nanoscale Research Letters. 6 (1): 514. Bibcode:2011NRL.....6..514K. doi:10.1186/1556-276X-6-514. PMC 3212053. PMID 21878120.
  10. ^ Gan, Q.; Gao, Y.; Wagner, K.; Vezenov, D.; Ding, Y. J.; Bartoli, F. J. (2011). "Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings". Proceedings of the National Academy of Sciences. 108 (13): 5169–73. arXiv:1003.4060. Bibcode:2011PNAS..108.5169G. doi:10.1073/pnas.1014963108. PMC 3069179. PMID 21402936.
  11. ^ Frederix, P. L. T. M.; Bosshart, P. D.; Engel, A. (2009). "Atomic Force Microscopy of Biological Membranes". Biophysical Journal. 96 (2): 329–338. Bibcode:2009BpJ....96Q.329F. doi:10.1016/j.bpj.2008.09.046. PMC 2716480. PMID 19167286.
  12. ^ Hyttel Clausen, C.; Moresco Lange, J.; Boye Jensen, L.; Jaykumar Shah, P.; Ioannou Dimaki, M.; Edith Svendsen, W. (2008). "Scanning conductance microscopy investigations on fixed human chromosomes". BioTechniques. 44 (2): 225–228. doi:10.2144/000112676. PMID 18330350.
  13. ^ Biswas, A.; Selling, G. W.; Woods, K. K.; Evans, K. (2009). "Surface modification of zein films". Industrial Crops and Products. 30: 168–171. doi:10.1016/j.indcrop.2009.02.002.
  14. ^ www.hessen-nanotech.de. "Nanotechnologie Unternehmen - NanoAndMore GmbH" (PDF). p. 102. Retrieved 17 January 2012.
  15. ^ www.nanoproducts.de. "Katalog - NanoAndMore GmbH - AFM sensoren". Retrieved 17 January 2012.