Menisdaurin
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (October 2024) |
Identifiers | |
---|---|
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.378.619 |
EC Number |
|
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C14H19NO7 | |
Molar mass | 313.3 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Menisdaurin is a glycoside and nitrile originally isolated from Menispermum dauricum, but is also found in European holly and other plants.
Occurrence
[edit]Menisdaurin was first isolated in the 1970s from Menispermum dauricum (genus Menispermum).[1] The compound was named after the plant.[2] It is also present in Flueggea virosa (genus Flueggea),[3] in European holly,[4] and in various species of the genus Tiquilia (family Tiquilia), especially in large quantities in Tiquilia canescens.[5]
Properties
[edit]The compound is a glucoside and contains an α,β-unsaturated nitrile in the aglycone. The sugar component is glucose. It forms colorless crystalline platelets with a melting point of 175-176 °C. The compound can be hydrolyzed with β-glucosidase or with 20% sulfuric acid, during which the aglycone decomposes following glucose elimination.[1] However, under suitable conditions, the aglycone can be isolated. For this purpose, the glycoside is reacted in an aqueous sodium acetate buffer with glucosidase, and the released aglycone, which is unstable in water, is continuously extracted with ethyl acetate.[2]
References
[edit]- ^ a b Kotaro Takahashi, Setsuko Matsuzawa, Masako Takani (1978), "Studies on the constituents of medicinal plants. XX. The constituent of the vines of Menispermum dauricum DC.", Chemical and Pharmaceutical Bulletin, vol. 26, no. 6, pp. 1677–1681, doi:10.1248/cpb.26.1677
{{citation}}
: CS1 maint: multiple names: authors list (link) - ^ a b Rie Shirakawa, Sanami Ishikawa, Mizuki Takahasi, Yuuka Ueno, Yoshinori Uekusa, Yuji Narukawa, Takeshi Sugai, Fumiyuki Kiuchi (January 2019), "Preparation of menisdaurigenin and related compounds", Journal of Natural Medicines, vol. 73, no. 1, pp. 236–243, doi:10.1007/s11418-018-1235-5, PMID 30094599
{{citation}}
: CS1 maint: multiple names: authors list (link) - ^ Nasir A. Siddiqui, Perwez Alam, Adnan J. Al-Rehaily, Mai M. Al-Oqail, Mohammad Khalid Parvez (2015-05-01), "Simultaneous Quantification of Biomarkers Bergenin and Menisdaurin in the Methanol Extract of Aerial Parts of Flueggea virosa by Validated HPTLC Densitometric Method", Journal of Chromatographic Science, vol. 53, no. 5, pp. 824–829, doi:10.1093/chromsci/bmu231, PMID 25662964
{{citation}}
: CS1 maint: multiple names: authors list (link) - ^ Adolf Nahrstedt, Victor Wray (1990), "Structural revision of a putative cyanogenic glucoside from Ilex aquifolium", Phytochemistry, vol. 29, no. 12, pp. 3934–3936, Bibcode:1990PChem..29.3934N, doi:10.1016/0031-9422(90)85364-L
- ^ David S. Seigler, Guido F. Pauli, Roland Fröhlich, Elina Wegelius, Adolf Nahrstedt, Kenneth E. Glander, John E. Ebinger (July 2005), "Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virginiana, Tiquilia plicata, and Tiquilia canescens", Phytochemistry, vol. 66, no. 13, pp. 1567–1580, Bibcode:2005PChem..66.1567S, doi:10.1016/j.phytochem.2005.02.021, PMID 16002108
{{citation}}
: CS1 maint: multiple names: authors list (link)