Menger curvature
In mathematics, the Menger curvature of a triple of points in n-dimensional Euclidean space Rn is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian-American mathematician Karl Menger.
Definition
[edit]Let x, y and z be three points in Rn; for simplicity, assume for the moment that all three points are distinct and do not lie on a single straight line. Let Π ⊆ Rn be the Euclidean plane spanned by x, y and z and let C ⊆ Π be the unique Euclidean circle in Π that passes through x, y and z (the circumcircle of x, y and z). Let R be the radius of C. Then the Menger curvature c(x, y, z) of x, y and z is defined by
If the three points are collinear, R can be informally considered to be +∞, and it makes rigorous sense to define c(x, y, z) = 0. If any of the points x, y and z are coincident, again define c(x, y, z) = 0.
Using the well-known formula relating the side lengths of a triangle to its area, it follows that
where A denotes the area of the triangle spanned by x, y and z.
Another way of computing Menger curvature is the identity
where is the angle made at the y-corner of the triangle spanned by x,y,z.
Menger curvature may also be defined on a general metric space. If X is a metric space and x,y, and z are distinct points, let f be an isometry from into . Define the Menger curvature of these points to be
Note that f need not be defined on all of X, just on {x,y,z}, and the value cX (x,y,z) is independent of the choice of f.
Integral Curvature Rectifiability
[edit]Menger curvature can be used to give quantitative conditions for when sets in may be rectifiable. For a Borel measure on a Euclidean space define
- A Borel set is rectifiable if , where denotes one-dimensional Hausdorff measure restricted to the set .[1]
The basic intuition behind the result is that Menger curvature measures how straight a given triple of points are (the smaller is, the closer x,y, and z are to being collinear), and this integral quantity being finite is saying that the set E is flat on most small scales. In particular, if the power in the integral is larger, our set is smoother than just being rectifiable[2]
- Let , be a homeomorphism and . Then if .
- If where , and , then is rectifiable in the sense that there are countably many curves such that . The result is not true for , and for .:[3]
In the opposite direction, there is a result of Peter Jones:[4]
- If , , and is rectifiable. Then there is a positive Radon measure supported on satisfying for all and such that (in particular, this measure is the Frostman measure associated to E). Moreover, if for some constant C and all and r>0, then . This last result follows from the Analyst's Traveling Salesman Theorem.
Analogous results hold in general metric spaces:[5]
See also
[edit]External links
[edit]- Leymarie, F. (September 2003). "Notes on Menger Curvature". Archived from the original on 2007-08-21. Retrieved 2007-11-19.
References
[edit]- ^ Leger, J. (1999). "Menger curvature and rectifiability" (PDF). Annals of Mathematics. 149 (3): 831–869. arXiv:math/9905212. doi:10.2307/121074. JSTOR 121074. S2CID 216176.
- ^ Strzelecki, Paweł; Szumańska, Marta; von der Mosel, Heiko (2010). "Regularizing and self-avoidance effects of integral Menger curvature". Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 9 (1): 145–187.
- ^ Lin, Yong; Mattila, Pertti (2000). "Menger curvature and C1 regularity of fractals" (PDF). Proceedings of the American Mathematical Society. 129 (6): 1755–1762. doi:10.1090/s0002-9939-00-05814-7.
- ^ Pajot, H. (2000). Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral. Springer. ISBN 3-540-00001-1.
- ^ Schul, Raanan (2007). "Ahlfors-regular curves in metric spaces" (PDF). Annales Academiae Scientiarum Fennicae. 32: 437–460.
- Tolsa, Xavier (2000). "Principal values for the Cauchy integral and rectifiability". Proceedings of the American Mathematical Society. 128 (7): 2111–2119. doi:10.1090/S0002-9939-00-05264-3.