Jump to content

Meier Eidelheit

From Wikipedia, the free encyclopedia
Eidelheit, Meier
Born(1910-07-06)6 July 1910
DiedMarch 1943(1943-03-00) (aged 32)
NationalityPolish
Alma materTechnical University of Lwów
Known forEidelheit separation theorem (1936),
Eidelheit interpolation theorem (1936),
Eidelheit theorem concerning rings of continuous functions (1940)[1]
Scientific career
FieldsMathematics
InstitutionsUniversity of Lwów
Doctoral advisorsStefan Banach

Meier "Maks" Eidelheit (6 July 1910 – March 1943) was a Polish mathematician belonging to the Lwów School of Mathematics who worked in Lwów and was murdered in the Holocaust.

Biography

[edit]

Meier Eidelheit left the Lwów Gymnasium in 1929 and then studied mathematics at the scientific faculty in Lwów, completing his study in 1933 with a thesis on the theory of summation. In 1938, with Stefan Banach as supervisor, he gained a doctorate from the Jan-Kazimierz-University of Lwów with a Dissertation über die Auflösbarkeit eines linearen Gleichungssystems mit unendlich vielen Unbekannten.[1] From 1933 to 1939 he gave private lectures; from 31 January 1939 onwards he was an Assistant Professor of Analysis, from 21 March 1941 he was candidate for a professorship.[2] He worked mainly on Functional analysis. On the basis of his 1936 paper on convex sets in linear normed spaces, geometric versions of the hyperplane separation theorem are also known (in German) as Trennungssatz von Eidelheit (Eidelheit separation theorem).[3][4] A theorem on the solubility of certain infinite systems of equations in Fréchet spaces is also named after him.[5]

Eidelheit published six papers in Studia Mathematica from 1936 to 1940;[3][6][7][8][9][10] a seventh was printed posthumously.[11] Eidelheit was an active contributor to the Scottish Book, posing problems 172, 173, 174, 176 and 188[12] and answering problem 26 (Mazur), 64 (Mazur),[3][13] 162 (Steinhaus), and 176 (Eidelheit).

Meier Eidelheit was murdered in the Holocaust in March 1943. His posthumously published article Quelques remarques sur les fonctionelles linéaires in volume 10 of the Studia Mathematica was prefaced with the following lines: "L’auteur de ce travail a été assassiné par les Allemands en mars de 1943. Le manuscrit qu’il fut parvenir à la Rédaction en 1941 a été retrouvé récemment entre les papiers laissés par S. Banach." (in English: The author of this work was murdered in March 1943 by the Germans. The manuscript, which reached the editors in 1941, was recently found among the writings left by S. Banach.)[11]

See also

[edit]

References

[edit]
  • Lech Maligranda (26 May 2011). Meier (Maks) Eidelheit (1910-1943) - on the centenary of his birth. XXV Scientific Conference of the Polish Mathematical Society (in Polish). in History of Mathematics, "Polish mathematics in the first half of the twentieth century", 23–27 May 2011, Będlewo, Poland (paper in preparation as per[1]).
  • J. G. Prytua. "Meier Eidelheit" (in Ukrainian).

Notes

[edit]
  1. ^ a b c Maligranda, Lech. "Topology Atlas: Meier (Maks) Eidelheit (1910–1943)". Archived from the original on 2 April 2015.
  2. ^ Ярослав Григорович Притула. "До 100-річчя з Дня народження Айдельгайт Майєр" [On Meier Eidelheit's 100th Birthday] (in Ukrainian). Archived from the original on 2 April 2015. Retrieved 22 February 2016. (with picture)
  3. ^ a b c Eidelheit, M. (1936). "Zur Theorie der konvexen Mengen in linearen normierten Räumen" [On the theory of convex sets in linear normed spaces] (PDF). Studia Mathematica (in German). 6: 104–111.
  4. ^ Kosmol, Peter (2010). "11.3: Trennungssatz von Eidelheit". Optimierung und Approximation [Optimisation and Approximation] (in German). Walter de Gruyter. ISBN 978-3-11-021814-5.
  5. ^ R. Meise; D. Vogt (1992). Einführung in die Funktionalanalysis [Introduction to functional analysis] (in German). Vieweg. ISBN 3-528-07262-8., Satz 26.27 Satz von Eidelheit
  6. ^ Eidelheit, M. (1936). "Über lineare Gleichungen in separablen Räumen" [On linear equations in separable spaces] (PDF). Studia Mathematica (in German). 6: 117–138.
  7. ^ Eidelheit, M. (1936). "Zur Theorie der Systeme linearer Gleichungen" [On the theory of systems of linear equations] (PDF). Studia Mathematica (in German). 6: 139–148.
  8. ^ Eidelheit, M. (1938). "Zur Theorie der Systeme linearer Gleichungen (II)" [On the theory of systems of linear equations (II)] (PDF). Studia Mathematica (in German). 7: 150–154–.
  9. ^ Eidelheit, M. (1939). "Über lineare Gleichungen in separablen Räumen (II)" [On linear equations in separable spaces (II)] (PDF). Studia Mathematica (in German). 8: 154–169.
  10. ^ Eidelheit, M. (1940). "On isomorphisms of rings of linear operators" (PDF). Studia Mathematica. 9: 97–105.
  11. ^ a b Eidelheit, M. (1948). "Quelques remarques sur les fonctionelles linéaires" [Some remarks on linear functionals] (PDF). Studia Mathematica (in French). 10: 140–147.
  12. ^ L. Maligranda; V. Mykhaylyuk; A. Plichko (2011). "On a problem of Eidelheit from The Scottish Book concerning absolutely continuous functions". Journal of Mathematical Analysis and Applications. J. Math. Anal. Appl. 375 (2): 401–411. doi:10.1016/j.jmaa.2010.09.027. S2CID 54991057.
  13. ^ Kakutani, S. (1937). "Ein Beweis des Satzes von Eidelheit über konvexe Mengen" [A proof of Eidelheit's theorem on convex sets]. Proceedings of the Japan Academy, Series A, Mathematical Sciences. Proceedings of the Imperial Academy of Japan (in German). 13 (4): 93–94. doi:10.3792/pia/1195579980.