Jump to content

Mehler–Fock transform

From Wikipedia, the free encyclopedia

In mathematics, the Mehler–Fock transform is an integral transform introduced by Mehler (1881) and rediscovered by Fock (1943).

It is given by

where P is a Legendre function of the first kind.

Under appropriate conditions, the following inversion formula holds:

References

[edit]
  • Brychkov, Yu.A.; Prudnikov, A.P. (2001) [1994], "Mehler–Fock transform", Encyclopedia of Mathematics, EMS Press
  • Fock, V. A. (1943), "On the representation of an arbitrary function by an integral involving Legendre's functions with a complex index", C. R. (Doklady) Acad. Sci. URSS, New Series, 39: 253–256, MR 0009665
  • Mehler, F. G. (1881), "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung", Mathematische Annalen (in German), 18 (2), Springer Berlin / Heidelberg: 161–194, doi:10.1007/BF01445847, ISSN 0025-5831
  • Yakubovich, S. B. (2001) [1994], "Mehler–Fock transform", Encyclopedia of Mathematics, EMS Press