Jump to content

Markov–Krein theorem

From Wikipedia, the free encyclopedia

In probability theory, the Markov–Krein theorem gives the best upper and lower bounds on the expected values of certain functions of a random variable where only the first moments of the random variable are known.[1][2][3][4] The result is named after Andrey Markov and Mark Krein.[5]

The theorem can be used to bound average response times in the M/G/k queueing system.[6]

References

[edit]
  1. ^ Stokes, S. Lynne; Mulry-Liggan, Mary H. (1987). "Estimation of Interviewer Variance for Categorical Variables" (PDF). Journal of Official Statistics. 3: 389–401. Retrieved 11 June 2013.
  2. ^ Brockett, P. L.; Kahane, Y. (1992). "Risk, Return, Skewness and Preference". Management Science. 38 (6): 851. doi:10.1287/mnsc.38.6.851.
  3. ^ Simar, L. (1976). "Maximum Likelihood Estimation of a Compound Poisson Process". The Annals of Statistics. 4 (6): 1200. doi:10.1214/aos/1176343651. JSTOR 2958588.
  4. ^ Karlin, S.; Studden, W. J. (1966). Tchebycheff Systems, with Applications in Analysis and Statistics. New York: Interscience. p. 82.
  5. ^ Kreĭn, M. G. (1959). "The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development". Amer. Math. Soc. Transl. 2 (12): 1–121. MR 0113106.
  6. ^ Gupta, V.; Osogami, T. (2011). "On Markov–Krein characterization of the mean waiting time in M/G/K and other queueing systems". Queueing Systems. 68 (3–4): 339. doi:10.1007/s11134-011-9248-8.