MacDowell–Mansouri action
Appearance
The MacDowell–Mansouri action (named after S. W. MacDowell and Freydoon Mansouri) is an action that is used to derive Einstein's field equations of general relativity.
It can usefully be formulated in terms of Cartan geometry.[1]
References
[edit]- ^ Wise, Derek K. (2010-08-07). "MacDowell-Mansouri gravity and Cartan geometry". Classical and Quantum Gravity. 27 (15): 155010. arXiv:gr-qc/0611154. Bibcode:2010CQGra..27o5010W. doi:10.1088/0264-9381/27/15/155010. ISSN 0264-9381. S2CID 16706599.
Further reading
[edit]- MacDowell, S. W.; Mansouri, F. (1977). "Unified geometric theory of gravity and supergravity". Phys. Rev. Lett. 38 (14): 739–742. Bibcode:1977PhRvL..38..739M. doi:10.1103/PhysRevLett.38.739.
- "Derek Wise on Cartan Geometry and MacDowell–Mansouri Gravity". The n-Category Café. July 7, 2007.
- Wise, D. (2010). “MacDowell-Mansouri gravity and Cartan geometry”. Class. Quantum Grav. 27, 155010.
- Reid, James A.; Wang, Charles H.-T. (2014). "Conformal holonomy in MacDowell-Mansouri gravity". J. Math. Phys. 55, 032501.