Jump to content

MTEX

From Wikipedia, the free encyclopedia

MTEX
Original author(s)Ralf Hielscher [Wikidata]
Developer(s)
  • Rüdiger Kilian
  • Erik Wünsche
  • Bjarne Jacobsen
  • Felix Bartel
  • Frank Niessen
Initial release2008
Stable release
6.0.beta3 / April 2024
Repositorygithub.com/mtex-toolbox/mtex
Written inMATLAB
LicenseGPL-2.0
Websitemtex-toolbox.github.io

The MTEX toolbox is a open-source MATLAB package specifically designed for the analysis of Electron Backscatter Diffraction (EBSD) data, which are widely used to analyse the crystallographic orientation of materials at the microscale.

History

[edit]

The development of MTEX began in 2008, spearheaded by Ralf Hielscher,[1] who aimed to create a user-friendly platform that could facilitate the analysis of large datasets generated by EBSD. The toolbox has since evolved, incorporating various features that allow for the manipulation and visualisation of crystallographic data.[2][3][4]

EBSD allows for the mapping of crystallographic orientations in materials, providing insights into their microstructural properties. The integration of EBSD with MATLAB through MTEX has enabled researchers to perform advanced analyses, such as orientation distribution function (ODF) calculations,[5] pole figure plotting,[6] calculation of anisotropic physical properties from texture data,[7] and grain boundary and grain reconstruction,[8] which are crucial for understanding the mechanical properties of materials, as the crystallographic texture can significantly influence their behaviour under stress.[9][10][11]

Moreover, the open-source nature of MTEX has fostered a collaborative environment among researchers, allowing for continuous improvements and updates to the toolbox.[12] This community-driven approach has led to the incorporation of new features and functionalities.[13][14]

MTEX's versatility is further demonstrated by its application across various fields, including geology, metallurgy, and materials science. In geological studies, for instance, MTEX has been used to analyse the crystallographic orientation of minerals, providing insights into their formation processes and the conditions under which they evolved.[15][16] Similarly, in metallurgy, researchers have employed MTEX to investigate the effects of processing methods on the texture and grain boundary characteristics of alloys, which are critical for optimising their mechanical properties.[17][18]

The toolbox has also been instrumental in advancing the understanding of deformation mechanisms in materials. By analysing EBSD data with MTEX, researchers can elucidate the relationship between microstructural features and mechanical behaviour, such as strain localisation and phase transformations during deformation.[19][20]

References

[edit]
  1. ^ Hielscher, R.; Schaeben, H. (2008-12-01). "A novel pole figure inversion method: specification of the MTEX algorithm". Journal of Applied Crystallography. 41 (6): 1024–1037. doi:10.1107/S0021889808030112. ISSN 0021-8898.
  2. ^ Mock, D.; Neave, D. A.; Müller, S.; Garbe-Schönberg, D.; Namur, O.; Ildefonse, B.; Koepke, J. (January 2021). "Formation of Igneous Layering in the Lower Oceanic Crust From the Samail Ophiolite, Sultanate of Oman". Journal of Geophysical Research: Solid Earth. 126 (1). Bibcode:2021JGRB..12619573M. doi:10.1029/2020JB019573. ISSN 2169-9313.
  3. ^ Tholen, Sören; Linckens, Jolien; Zulauf, Gernold (2023-10-26). "Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)". Solid Earth. 14 (10): 1123–1154. Bibcode:2023SolE...14.1123T. doi:10.5194/se-14-1123-2023. ISSN 1869-9510.
  4. ^ Tholen, Sören; Linckens, Jolien; Zulauf, Gernold (2023-01-02). "Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)". Egusphere. doi:10.5194/egusphere-2022-1348. Retrieved 2024-10-17.
  5. ^ Bachmann, F.; Hielscher, Ralf; Schaeben, Helmut (2010). "Texture Analysis with MTEX – Free and Open Source Software Toolbox". Solid State Phenomena. 160: 63–68. doi:10.4028/www.scientific.net/SSP.160.63. ISSN 1662-9779.
  6. ^ Hielscher, R.; Schaeben, H. (2008-12-01). "A novel pole figure inversion method: specification of the MTEX algorithm". Journal of Applied Crystallography. 41 (6): 1024–1037. doi:10.1107/S0021889808030112. ISSN 0021-8898.
  7. ^ Mainprice, David; Hielscher, Ralf; Schaeben, Helmut (January 2011). "Calculating anisotropic physical properties from texture data using the MTEX open-source package". Geological Society, London, Special Publications. 360 (1): 175–192. Bibcode:2011GSLSP.360..175M. doi:10.1144/SP360.10. ISSN 0305-8719.
  8. ^ Bachmann, Florian; Hielscher, Ralf; Schaeben, Helmut (2011-12-01). "Grain detection from 2d and 3d EBSD data—Specification of the MTEX algorithm". Ultramicroscopy. 111 (12): 1720–1733. doi:10.1016/j.ultramic.2011.08.002. ISSN 0304-3991. PMID 22094374.
  9. ^ Zolotorevsky, N.; Rybin, V.; Ushanova, E.; Brodova, I.; Petrova, A.; Ermakova, N. (2017-12-01). "Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing". Letters on Materials. 7 (4): 363–366. doi:10.22226/2410-3535-2017-4-363-366. ISSN 2218-5046.
  10. ^ Huang, Jing-Jia; Militzer, Christian; Wijayawardhana, Charles; Forsberg, Urban; Pedersen, Henrik (2022-07-01), Growth of silicon carbide multilayers with varying preferred growth orientation, doi:10.26434/chemrxiv-2022-c0md8, retrieved 2024-10-17
  11. ^ Cabo Rios, Alberto; Hryha, Eduard; Olevsky, Eugene; Harlin, Peter (2022-08-08). "Sintering anisotropy of binder jetted 316L stainless steel: part II – microstructure evolution during sintering". Powder Metallurgy. 65 (4): 283–295. Bibcode:2022PowM...65..283C. doi:10.1080/00325899.2021.2020486. ISSN 0032-5899.
  12. ^ Mainprice, David; Bachmann, Florian; Hielscher, Ralf; Schaeben, Helmut (January 2015). "Descriptive tools for the analysis of texture projects with large datasets using MTEX : strength, symmetry and components". Geological Society, London, Special Publications. 409 (1): 251–271. Bibcode:2015GSLSP.409..251M. doi:10.1144/SP409.8. ISSN 0305-8719.
  13. ^ Zhou, Silang; Antoja-Lleonart, Jordi; Ocelík, Václav; Noheda, Beatriz (2022-02-07). "Thin films of the $$\alpha$$ -quartz $$Si_xGe_{1-x}O_2$$ solid solution". Scientific Reports. 12 (1): 2010. doi:10.1038/s41598-022-05595-z. ISSN 2045-2322. PMC 8821611. PMID 35132092.
  14. ^ Yardley, V. A.; Fahimi, S.; Payton, E. J. (March 2015). "Classification of creep crack and cavitation sites in tempered martensite ferritic steel microstructures using MTEX toolbox for EBSD". Materials Science and Technology. 31 (5): 547–553. Bibcode:2015MatST..31..547Y. doi:10.1179/1743284714Y.0000000603. ISSN 0267-0836.
  15. ^ Aydogan, E.; Pal, S.; Anderoglu, O.; Maloy, S. A.; Vogel, S. C.; Odette, G. R.; Lewandowski, J. J.; Hoelzer, D. T.; Anderson, I. E.; Rieken, J. R. (2016-04-20). "Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys". Materials Science and Engineering: A. 661: 222–232. doi:10.1016/j.msea.2016.02.085. ISSN 0921-5093.
  16. ^ Bobruk, Elena V.; Dolzhenko, Pavel D.; Murashkin, Maxim Yu; Valiev, Ruslan Z.; Enikeev, Nariman A. (January 2022). "The Microstructure and Strength of UFG 6060 Alloy after Superplastic Deformation at a Lower Homologous Temperature". Materials. 15 (19): 6983. Bibcode:2022Mate...15.6983B. doi:10.3390/ma15196983. ISSN 1996-1944. PMC 9570586. PMID 36234327.
  17. ^ Moses, Marie; Ullmann, Madlen; Prahl, Ulrich (September 2023). "Influence of Aluminum Content on the Microstructure, Mechanical Properties, and Hot Deformation Behavior of Mg-Al-Zn Alloys". Metals. 13 (9): 1599. doi:10.3390/met13091599. ISSN 2075-4701.
  18. ^ Serrano-Munoz, Itziar; Ulbricht, Alexander; Fritsch, Tobias; Mishurova, Tatiana; Kromm, Arne; Hofmann, Michael; Wimpory, Robert C.; Evans, Alexander; Bruno, Giovanni (July 2021). "Scanning Manufacturing Parameters Determining the Residual Stress State in LPBF IN718 Small Parts". Advanced Engineering Materials. 23 (7). doi:10.1002/adem.202100158. ISSN 1438-1656.
  19. ^ Altree-Williams, Alexander; Pring, Allan; Ngothai, Yung; Brugger, Joël (2017-04-20). "The Carbonatation of Anhydrite: Kinetics and Reaction Pathways". ACS Earth and Space Chemistry. 1 (2): 89–100. Bibcode:2017ESC.....1...89A. doi:10.1021/acsearthspacechem.6b00012. ISSN 2472-3452.
  20. ^ Cao, Yi; Du, Jinxue; Park, Munjae; Jung, Sejin; Park, Yong; Kim, Dohyun; Choi, Seungsoon; Jung, Haemyeong; Austrheim, Håkon (May 2020). "Metastability and Nondislocation-Based Deformation Mechanisms of the Flem Eclogite in the Western Gneiss Region, Norway". Journal of Geophysical Research: Solid Earth. 125 (5). Bibcode:2020JGRB..12519375C. doi:10.1029/2020JB019375. hdl:10852/81408. ISSN 2169-9313.