Jump to content

Low-specificity L-threonine aldolase

From Wikipedia, the free encyclopedia
Low-specificity L-threonine aldolase
Identifiers
EC no.4.1.2.48
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

Low-specificity L-threonine aldolase (EC 4.1.2.48, LtaE) is an enzyme with systematic name L-threonine/L-allo-threonine acetaldehyde-lyase (glycine-forming).[1][2][3][4][5] This enzyme catalyses the following chemical reactions:

L-threonine glycine + acetaldehyde
L-allothreonine glycine + acetaldehyde

This enzyme requires pyridoxal phosphate.

References

[edit]
  1. ^ Yamada H, Kumagai H, Nagate T, Yoshida H (April 1970). "Crystalline threonine aldolase from Candida humicola". Biochemical and Biophysical Research Communications. 39 (1): 53–8. doi:10.1016/0006-291x(70)90756-4. PMID 5438301.
  2. ^ Kumagai H, Nagate T, Yoshida H, Yamada H (March 1972). "Threonine aldolase from Candida humicola. II. Purification, crystallization and properties". Biochimica et Biophysica Acta (BBA) - Enzymology. 258 (3): 779–90. doi:10.1016/0005-2744(72)90179-9. PMID 5017702.
  3. ^ Liu JQ, Nagata S, Dairi T, Misono H, Shimizu S, Yamada H (April 1997). "The GLY1 gene of Saccharomyces cerevisiae encodes a low-specific L-threonine aldolase that catalyzes cleavage of L-allo-threonine and L-threonine to glycine—expression of the gene in Escherichia coli and purification and characterization of the enzyme". European Journal of Biochemistry. 245 (2): 289–93. doi:10.1111/j.1432-1033.1997.00289.x. PMID 9151955.
  4. ^ Liu JQ, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (July 1998). "Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Escherichia coli". European Journal of Biochemistry. 255 (1): 220–6. doi:10.1046/j.1432-1327.1998.2550220.x. PMID 9692922.
  5. ^ Kim J, Kershner JP, Novikov Y, Shoemaker RK, Copley SD (November 2010). "Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5'-phosphate synthesis". Molecular Systems Biology. 6: 436. doi:10.1038/msb.2010.88. PMC 3010111. PMID 21119630.
[edit]