In mathematical analysis , Lorentz spaces , introduced by George G. Lorentz in the 1950s,[ 1] [ 2] are generalisations of the more familiar
L
p
{\displaystyle L^{p}}
spaces .
The Lorentz spaces are denoted by
L
p
,
q
{\displaystyle L^{p,q}}
. Like the
L
p
{\displaystyle L^{p}}
spaces, they are characterized by a norm (technically a quasinorm ) that encodes information about the "size" of a function, just as the
L
p
{\displaystyle L^{p}}
norm does. The two basic qualitative notions of "size" of a function are: how tall is the graph of the function, and how spread out is it. The Lorentz norms provide tighter control over both qualities than the
L
p
{\displaystyle L^{p}}
norms, by exponentially rescaling the measure in both the range (
p
{\displaystyle p}
) and the domain (
q
{\displaystyle q}
). The Lorentz norms, like the
L
p
{\displaystyle L^{p}}
norms, are invariant under arbitrary rearrangements of the values of a function.
The Lorentz space on a measure space
(
X
,
μ
)
{\displaystyle (X,\mu )}
is the space of complex-valued measurable functions
f
{\displaystyle f}
on X such that the following quasinorm is finite
‖
f
‖
L
p
,
q
(
X
,
μ
)
=
p
1
q
‖
t
μ
{
|
f
|
≥
t
}
1
p
‖
L
q
(
R
+
,
d
t
t
)
{\displaystyle \|f\|_{L^{p,q}(X,\mu )}=p^{\frac {1}{q}}\left\|t\mu \{|f|\geq t\}^{\frac {1}{p}}\right\|_{L^{q}\left(\mathbf {R} ^{+},{\frac {dt}{t}}\right)}}
where
0
<
p
<
∞
{\displaystyle 0<p<\infty }
and
0
<
q
≤
∞
{\displaystyle 0<q\leq \infty }
. Thus, when
q
<
∞
{\displaystyle q<\infty }
,
‖
f
‖
L
p
,
q
(
X
,
μ
)
=
p
1
q
(
∫
0
∞
t
q
μ
{
x
:
|
f
(
x
)
|
≥
t
}
q
p
d
t
t
)
1
q
=
(
∫
0
∞
(
τ
μ
{
x
:
|
f
(
x
)
|
p
≥
τ
}
)
q
p
d
τ
τ
)
1
q
.
{\displaystyle \|f\|_{L^{p,q}(X,\mu )}=p^{\frac {1}{q}}\left(\int _{0}^{\infty }t^{q}\mu \left\{x:|f(x)|\geq t\right\}^{\frac {q}{p}}\,{\frac {dt}{t}}\right)^{\frac {1}{q}}=\left(\int _{0}^{\infty }{\bigl (}\tau \mu \left\{x:|f(x)|^{p}\geq \tau \right\}{\bigr )}^{\frac {q}{p}}\,{\frac {d\tau }{\tau }}\right)^{\frac {1}{q}}.}
and, when
q
=
∞
{\displaystyle q=\infty }
,
‖
f
‖
L
p
,
∞
(
X
,
μ
)
p
=
sup
t
>
0
(
t
p
μ
{
x
:
|
f
(
x
)
|
>
t
}
)
.
{\displaystyle \|f\|_{L^{p,\infty }(X,\mu )}^{p}=\sup _{t>0}\left(t^{p}\mu \left\{x:|f(x)|>t\right\}\right).}
It is also conventional to set
L
∞
,
∞
(
X
,
μ
)
=
L
∞
(
X
,
μ
)
{\displaystyle L^{\infty ,\infty }(X,\mu )=L^{\infty }(X,\mu )}
.
Decreasing rearrangements [ edit ]
The quasinorm is invariant under rearranging the values of the function
f
{\displaystyle f}
, essentially by definition. In particular, given a complex-valued measurable function
f
{\displaystyle f}
defined on a measure space,
(
X
,
μ
)
{\displaystyle (X,\mu )}
, its decreasing rearrangement function,
f
∗
:
[
0
,
∞
)
→
[
0
,
∞
]
{\displaystyle f^{\ast }:[0,\infty )\to [0,\infty ]}
can be defined as
f
∗
(
t
)
=
inf
{
α
∈
R
+
:
d
f
(
α
)
≤
t
}
{\displaystyle f^{\ast }(t)=\inf\{\alpha \in \mathbf {R} ^{+}:d_{f}(\alpha )\leq t\}}
where
d
f
{\displaystyle d_{f}}
is the so-called distribution function of
f
{\displaystyle f}
, given by
d
f
(
α
)
=
μ
(
{
x
∈
X
:
|
f
(
x
)
|
>
α
}
)
.
{\displaystyle d_{f}(\alpha )=\mu (\{x\in X:|f(x)|>\alpha \}).}
Here, for notational convenience,
inf
∅
{\displaystyle \inf \varnothing }
is defined to be
∞
{\displaystyle \infty }
.
The two functions
|
f
|
{\displaystyle |f|}
and
f
∗
{\displaystyle f^{\ast }}
are equimeasurable , meaning that
λ
(
{
x
∈
X
:
|
f
(
x
)
|
>
α
}
)
=
λ
(
{
t
>
0
:
f
∗
(
t
)
>
α
}
)
,
α
>
0
,
{\displaystyle \lambda {\bigl (}\{x\in X:|f(x)|>\alpha \}{\bigr )}=\lambda {\bigl (}\{t>0:f^{\ast }(t)>\alpha \}{\bigr )},\quad \alpha >0,}
where
λ
{\displaystyle \lambda }
is the Lebesgue measure on the real line. The related symmetric decreasing rearrangement function, which is also equimeasurable with
f
{\displaystyle f}
, would be defined on the real line by
R
∋
t
↦
1
2
f
∗
(
|
t
|
)
.
{\displaystyle \mathbf {R} \ni t\mapsto {\tfrac {1}{2}}f^{\ast }(|t|).}
Given these definitions, for
0
<
p
<
∞
{\displaystyle 0<p<\infty }
and
0
<
q
≤
∞
{\displaystyle 0<q\leq \infty }
, the Lorentz quasinorms are given by
‖
f
‖
L
p
,
q
=
{
(
∫
0
∞
(
t
1
p
f
∗
(
t
)
)
q
d
t
t
)
1
q
q
∈
(
0
,
∞
)
,
sup
t
>
0
t
1
p
f
∗
(
t
)
q
=
∞
.
{\displaystyle \|f\|_{L^{p,q}}={\begin{cases}\left(\displaystyle \int _{0}^{\infty }\left(t^{\frac {1}{p}}f^{\ast }(t)\right)^{q}\,{\frac {dt}{t}}\right)^{\frac {1}{q}}&q\in (0,\infty ),\\\sup \limits _{t>0}\,t^{\frac {1}{p}}f^{\ast }(t)&q=\infty .\end{cases}}}
Lorentz sequence spaces [ edit ]
When
(
X
,
μ
)
=
(
N
,
#
)
{\displaystyle (X,\mu )=(\mathbb {N} ,\#)}
(the counting measure on
N
{\displaystyle \mathbb {N} }
), the resulting Lorentz space is a sequence space . However, in this case it is convenient to use different notation.
For
(
a
n
)
n
=
1
∞
∈
R
N
{\displaystyle (a_{n})_{n=1}^{\infty }\in \mathbb {R} ^{\mathbb {N} }}
(or
C
N
{\displaystyle \mathbb {C} ^{\mathbb {N} }}
in the complex case), let
‖
(
a
n
)
n
=
1
∞
‖
p
=
(
∑
n
=
1
∞
|
a
n
|
p
)
1
/
p
{\textstyle \left\|(a_{n})_{n=1}^{\infty }\right\|_{p}=\left(\sum _{n=1}^{\infty }|a_{n}|^{p}\right)^{1/p}}
denote the p-norm for
1
≤
p
<
∞
{\displaystyle 1\leq p<\infty }
and
‖
(
a
n
)
n
=
1
∞
‖
∞
=
sup
n
∈
N
|
a
n
|
{\textstyle \left\|(a_{n})_{n=1}^{\infty }\right\|_{\infty }=\sup _{n\in \mathbb {N} }|a_{n}|}
the ∞-norm. Denote by
ℓ
p
{\displaystyle \ell _{p}}
the Banach space of all sequences with finite p-norm. Let
c
0
{\displaystyle c_{0}}
the Banach space of all sequences satisfying
lim
n
→
∞
a
n
=
0
{\displaystyle \lim _{n\to \infty }a_{n}=0}
, endowed with the ∞-norm. Denote by
c
00
{\displaystyle c_{00}}
the normed space of all sequences with only finitely many nonzero entries. These spaces all play a role in the definition of the Lorentz sequence spaces
d
(
w
,
p
)
{\displaystyle d(w,p)}
below.
Let
w
=
(
w
n
)
n
=
1
∞
∈
c
0
∖
ℓ
1
{\displaystyle w=(w_{n})_{n=1}^{\infty }\in c_{0}\setminus \ell _{1}}
be a sequence of positive real numbers satisfying
1
=
w
1
≥
w
2
≥
w
3
≥
⋯
{\displaystyle 1=w_{1}\geq w_{2}\geq w_{3}\geq \cdots }
, and define the norm
‖
(
a
n
)
n
=
1
∞
‖
d
(
w
,
p
)
=
sup
σ
∈
Π
‖
(
a
σ
(
n
)
w
n
1
/
p
)
n
=
1
∞
‖
p
{\textstyle \left\|(a_{n})_{n=1}^{\infty }\right\|_{d(w,p)}=\sup _{\sigma \in \Pi }\left\|(a_{\sigma (n)}w_{n}^{1/p})_{n=1}^{\infty }\right\|_{p}}
. The Lorentz sequence space
d
(
w
,
p
)
{\displaystyle d(w,p)}
is defined as the Banach space of all sequences where this norm is finite. Equivalently, we can define
d
(
w
,
p
)
{\displaystyle d(w,p)}
as the completion of
c
00
{\displaystyle c_{00}}
under
‖
⋅
‖
d
(
w
,
p
)
{\displaystyle \|\cdot \|_{d(w,p)}}
.
The Lorentz spaces are genuinely generalisations of the
L
p
{\displaystyle L^{p}}
spaces in the sense that, for any
p
{\displaystyle p}
,
L
p
,
p
=
L
p
{\displaystyle L^{p,p}=L^{p}}
, which follows from Cavalieri's principle . Further,
L
p
,
∞
{\displaystyle L^{p,\infty }}
coincides with weak
L
p
{\displaystyle L^{p}}
. They are quasi-Banach spaces (that is, quasi-normed spaces which are also complete) and are normable for
1
<
p
<
∞
{\displaystyle 1<p<\infty }
and
1
≤
q
≤
∞
{\displaystyle 1\leq q\leq \infty }
. When
p
=
1
{\displaystyle p=1}
,
L
1
,
1
=
L
1
{\displaystyle L^{1,1}=L^{1}}
is equipped with a norm, but it is not possible to define a norm equivalent to the quasinorm of
L
1
,
∞
{\displaystyle L^{1,\infty }}
, the weak
L
1
{\displaystyle L^{1}}
space. As a concrete example that the triangle inequality fails in
L
1
,
∞
{\displaystyle L^{1,\infty }}
, consider
f
(
x
)
=
1
x
χ
(
0
,
1
)
(
x
)
and
g
(
x
)
=
1
1
−
x
χ
(
0
,
1
)
(
x
)
,
{\displaystyle f(x)={\tfrac {1}{x}}\chi _{(0,1)}(x)\quad {\text{and}}\quad g(x)={\tfrac {1}{1-x}}\chi _{(0,1)}(x),}
whose
L
1
,
∞
{\displaystyle L^{1,\infty }}
quasi-norm equals one, whereas the quasi-norm of their sum
f
+
g
{\displaystyle f+g}
equals four.
The space
L
p
,
q
{\displaystyle L^{p,q}}
is contained in
L
p
,
r
{\displaystyle L^{p,r}}
whenever
q
<
r
{\displaystyle q<r}
. The Lorentz spaces are real interpolation spaces between
L
1
{\displaystyle L^{1}}
and
L
∞
{\displaystyle L^{\infty }}
.
Hölder's inequality[ edit ]
‖
f
g
‖
L
p
,
q
≤
A
p
1
,
p
2
,
q
1
,
q
2
‖
f
‖
L
p
1
,
q
1
‖
g
‖
L
p
2
,
q
2
{\displaystyle \|fg\|_{L^{p,q}}\leq A_{p_{1},p_{2},q_{1},q_{2}}\|f\|_{L^{p_{1},q_{1}}}\|g\|_{L^{p_{2},q_{2}}}}
where
0
<
p
,
p
1
,
p
2
<
∞
{\displaystyle 0<p,p_{1},p_{2}<\infty }
,
0
<
q
,
q
1
,
q
2
≤
∞
{\displaystyle 0<q,q_{1},q_{2}\leq \infty }
,
1
/
p
=
1
/
p
1
+
1
/
p
2
{\displaystyle 1/p=1/p_{1}+1/p_{2}}
, and
1
/
q
=
1
/
q
1
+
1
/
q
2
{\displaystyle 1/q=1/q_{1}+1/q_{2}}
.
If
(
X
,
μ
)
{\displaystyle (X,\mu )}
is a nonatomic σ-finite measure space, then (i)
(
L
p
,
q
)
∗
=
{
0
}
{\displaystyle (L^{p,q})^{*}=\{0\}}
for
0
<
p
<
1
{\displaystyle 0<p<1}
, or
1
=
p
<
q
<
∞
{\displaystyle 1=p<q<\infty }
; (ii)
(
L
p
,
q
)
∗
=
L
p
′
,
q
′
{\displaystyle (L^{p,q})^{*}=L^{p',q'}}
for
1
<
p
<
∞
,
0
<
q
≤
∞
{\displaystyle 1<p<\infty ,0<q\leq \infty }
, or
0
<
q
≤
p
=
1
{\displaystyle 0<q\leq p=1}
; (iii)
(
L
p
,
∞
)
∗
≠
{
0
}
{\displaystyle (L^{p,\infty })^{*}\neq \{0\}}
for
1
≤
p
≤
∞
{\displaystyle 1\leq p\leq \infty }
. Here
p
′
=
p
/
(
p
−
1
)
{\displaystyle p'=p/(p-1)}
for
1
<
p
<
∞
{\displaystyle 1<p<\infty }
,
p
′
=
∞
{\displaystyle p'=\infty }
for
0
<
p
≤
1
{\displaystyle 0<p\leq 1}
, and
∞
′
=
1
{\displaystyle \infty '=1}
.
Atomic decomposition [ edit ]
The following are equivalent for
0
<
p
≤
∞
,
1
≤
q
≤
∞
{\displaystyle 0<p\leq \infty ,1\leq q\leq \infty }
.
(i)
‖
f
‖
L
p
,
q
≤
A
p
,
q
C
{\displaystyle \|f\|_{L^{p,q}}\leq A_{p,q}C}
.
(ii)
f
=
∑
n
∈
Z
f
n
{\displaystyle f=\textstyle \sum _{n\in \mathbb {Z} }f_{n}}
where
f
n
{\displaystyle f_{n}}
has disjoint support, with measure
≤
2
n
{\displaystyle \leq 2^{n}}
, on which
0
<
H
n
+
1
≤
|
f
n
|
≤
H
n
{\displaystyle 0<H_{n+1}\leq |f_{n}|\leq H_{n}}
almost everywhere, and
‖
H
n
2
n
/
p
‖
ℓ
q
(
Z
)
≤
A
p
,
q
C
{\displaystyle \|H_{n}2^{n/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C}
.
(iii)
|
f
|
≤
∑
n
∈
Z
H
n
χ
E
n
{\displaystyle |f|\leq \textstyle \sum _{n\in \mathbb {Z} }H_{n}\chi _{E_{n}}}
almost everywhere, where
μ
(
E
n
)
≤
A
p
,
q
′
2
n
{\displaystyle \mu (E_{n})\leq A_{p,q}'2^{n}}
and
‖
H
n
2
n
/
p
‖
ℓ
q
(
Z
)
≤
A
p
,
q
C
{\displaystyle \|H_{n}2^{n/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C}
.
(iv)
f
=
∑
n
∈
Z
f
n
{\displaystyle f=\textstyle \sum _{n\in \mathbb {Z} }f_{n}}
where
f
n
{\displaystyle f_{n}}
has disjoint support
E
n
{\displaystyle E_{n}}
, with nonzero measure, on which
B
0
2
n
≤
|
f
n
|
≤
B
1
2
n
{\displaystyle B_{0}2^{n}\leq |f_{n}|\leq B_{1}2^{n}}
almost everywhere,
B
0
,
B
1
{\displaystyle B_{0},B_{1}}
are positive constants, and
‖
2
n
μ
(
E
n
)
1
/
p
‖
ℓ
q
(
Z
)
≤
A
p
,
q
C
{\displaystyle \|2^{n}\mu (E_{n})^{1/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C}
.
(v)
|
f
|
≤
∑
n
∈
Z
2
n
χ
E
n
{\displaystyle |f|\leq \textstyle \sum _{n\in \mathbb {Z} }2^{n}\chi _{E_{n}}}
almost everywhere, where
‖
2
n
μ
(
E
n
)
1
/
p
‖
ℓ
q
(
Z
)
≤
A
p
,
q
C
{\displaystyle \|2^{n}\mu (E_{n})^{1/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C}
.
^ G. Lorentz, "Some new function spaces", Annals of Mathematics 51 (1950), pp. 37-55.
^ G. Lorentz, "On the theory of spaces Λ", Pacific Journal of Mathematics 1 (1951), pp. 411-429.
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics