List of piezoelectric materials
This page lists properties of several commonly used piezoelectric materials.
Piezoelectric materials (PMs) can be broadly classified as either crystalline, ceramic, or polymeric.[1] The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate, and lead titanate. Gallium nitride and zinc oxide can also be regarded as a ceramic due to their relatively wide band gaps. Semiconducting PMs offer features such as compatibility with integrated circuits and semiconductor devices. Inorganic ceramic PMs offer advantages over single crystals, including ease of fabrication into a variety of shapes and sizes not constrained crystallographic directions. Organic polymer PMs, such as PVDF, have low Young's modulus compared to inorganic PMs. Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured into large areas, and cut into a variety of shapes. In addition polymers also exhibit high strength, high impact resistance, low dielectric constant, low elastic stiffness, and low density, thereby a high voltage sensitivity which is a desirable characteristic along with low acoustic and mechanical impedance useful for medical and underwater applications.
Among PMs, PZT ceramics are popular as they have a high sensitivity, a high g33 value. They are however brittle. Furthermore, they show low Curie temperature, leading to constraints in terms of applications in harsh environmental conditions. However, promising is the integration of ceramic disks into industrial appliances moulded from plastic. This resulted in the development of PZT-polymer composites, and the feasible integration of functional PM composites on large scale, by simple thermal welding or by conforming processes. Several approaches towards lead-free ceramic PM have been reported, such as piezoelectric single crystals (langasite), and ferroelectric ceramics with a perovskite structure and bismuth layer-structured ferroelectrics (BLSF), which have been extensively researched. Also, several ferroelectrics with perovskite-structure (BaTiO3 [BT], (Bi1/2Na1/2) TiO3 [BNT], (Bi1/2K1/2) TiO3 [BKT], KNbO3 [KN], (K, Na) NbO3 [KNN]) have been investigated for their piezoelectric properties.
Key piezoelectric properties
[edit]The following table lists the following properties for piezoelectric materials
- The piezoelectric coefficients (d33, d31, d15 etc.) measure the strain induced by an applied voltage (expressed as meters per volt). High dij coefficients indicate larger displacements which are needed for motoring transducer devices. The coefficient d33 measures deformation in the same direction (polarization axis) as the induced potential, whereas d31 describes the response when the force is applied perpendicular to the polarization axis. The d15 coefficient measures the response when the applied mechanical stress is due to shear deformation.
- Relative permittivity (εr) is the ratio between the absolute permittivity of the piezoelectric material, ε, and the vacuum permittivity, ε0.
- The electromechanical coupling factor k is an indicator of the effectiveness with which a piezoelectric material converts electrical energy into mechanical energy, or converts mechanical energy into electrical energy. The first subscript to k denotes the direction along which the electrodes are applied; the second denotes the direction along which the mechanical energy is applied, or developed.
- The mechanical quality factor Qm is an important high-power property of piezoelectric ceramics. It is the inverse of the mechanical loss tan ϕ.
Table
[edit]Single crystals | ||||||
---|---|---|---|---|---|---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittivity, εr | Electromechanical coupling factor, k | Quality factor |
Hutson 1963[2] | AlN | d15 = -4.07per | ε33 = 11.4 | |||
d31 = -2 | ||||||
d33 = 5 | ||||||
Cook et al. 1963[3] | BaTiO3 | d15 = 392 | ε11 = 2920 | k15 = 0.57 | ||
d31 = -34.5 | ε33 = 168 | k31 = 0.315 | ||||
d33 = 85.6 | k33 = 0.56 | |||||
Warner et al. 1967[4] | LiNbO3 (Au-Au) | <001> | d15 = 68 | ε11 = 84 | ||
d22 = 21 | ε33 = 30 | |||||
d31 = -1 | k31 = 0.02 | |||||
d33 = 6 | kt = 0.17 | |||||
Smith et al. 1971[5] | LiNbO3 | <001> | d15 = 69.2 | ε11 = 85.2 | ||
d22 = 20.8 | ε33 = 28.2 | |||||
d31 = -0.85 | ||||||
d33 = 6 | ||||||
Yamada et al. 1967[6] | LiNbO3 (Au-Au) | <001> | d15 = 74 | ε11 = 84.6 | ||
d22 = 21 | ε33 = 28.6 | k22 = 0.32 | ||||
d31 = -0.87 | k31 = 0.023 | |||||
d33 = 16 | k33 = 0.47 | |||||
Yamada et al. 1969[7] | LiTaO3 | d15 = 26 | ε11 = 53 | |||
d22 = 8.5 | ε33 = 44 | |||||
d31 = -3 | ||||||
d33 = 9.2 | ||||||
Cao et al. 2002[8] | PMN-PT (33%) | d15 = 146 | ε11 = 1660 | k15 = 0.32 | ||
d31 = -1330 | ε33 = 8200 | k31 = 0.59 | ||||
d33 = 2820 | k33 = 0.94 | |||||
kt = 0.64 | ||||||
Badel et al. 2006[9] | PMN-25PT | <110> | d31 = -643 | ε33 = 2560 | k31 = -0.73 | 362 |
Kobiakov 1980[10] | ZnO | d15 = -8.3 | ε11 = 8.67 | k15 = 0.199 | ||
d31 = -5.12 | ε33 = 11.26 | k31 = 0.181 | ||||
d33 = 12.3 | k33 = 0.466 | |||||
Zgonik et al. 1994[11] | ZnO (pure with lithium dopant) | d15 = -13.3 | kr = 8.2 | |||
d31 = -4.67 | ||||||
d33 = 12.0 | ||||||
Zgonik et al. 1994[12] | BaTiO3 single crystals | [001] (single domain) | d33 = 90 | |||
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] (single domain) | d33 = 224 | |||
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 100 ľm) | d33 = 235 | ε33 = 1984 | k33 = 54.4 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 60 ľm) | d33 = 241 | ε33 = 1959 | k33 = 55.9 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] (domain size of 22 ľm) | d33 = 256 | ε33 = 2008 | k33 = 64.7 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 15 ľm) | d33 = 274 | ε33 = 2853 | k33 = 66.1 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 14 ľm) | d33 = 289 | ε33 = 1962 | k33 = 66.7 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral | d33 = 331 | ε33 = 2679 | k33 = 65.2 | |
[13] | LN crystal | d31 = -4.5
d33 = -0.27 |
||||
Li et al. 2010[14] | PMNT31 | d33 = 2000 | ε33 = 5100 | k31 = 80 | ||
d31 = -750 | ||||||
Zhang et al. 2002[15] | PMNT31-A | 1400 | ε33 = 3600 | |||
Zhang et al. 2002[15] | PMNT31-B | 1500 | ε33 = 4800 | |||
Zhang et al. 2002[15] | PZNT4.5 | d33 = 2100 | ε33 = 4400 | k31 = 83 | ||
d31 = -900 | ||||||
Zhang et al. 2004[16] | PZNT8 | d33 = 2500 | ε33 = 6000 | k31 = 89 | ||
d31 = -1300 | ||||||
Zhang et al. 2004[16] | PZNT12 | d33 = 576 | ε33 = 870 | k31 = 52 | ||
d31 = -217 | ||||||
Yamashita et al. 1997[17] | PSNT33 | ε33 = 960 | / | |||
Yasuda et al. 2001[18] | PINT28 | 700 | ε33 = 1500 | / | ||
Guo et al. 2003[19] | PINT34 | 2000 | ε33 = 5000 | / | ||
Hosono et al. 2003[20] | PIMNT | 1950 | ε33 = 3630 | / | ||
Zhang et al. 2002[15] | PYNT40 | d33 = 1200 | ε33 = 2700 | k31 = 76 | ||
d31 = -500 | ||||||
Zhang et al. 2012[21] | PYNT45 | d33 = 2000 | ε33 = 2000 | k31 = 78 | ||
Zhang et al. 2003[22] | BSPT57 | d33 = 1200 | ε33 = 3000 | k31 = 77 | ||
d31 = -560 | ||||||
Zhang et al. 2003[23] | BSPT58 | d33 = 1400 | ε33 = 3200 | k31 = 80 | ||
d31 = -670 | ||||||
Zhang et al. 2004[16] | BSPT66 | d33 = 440 | ε33 = 820 | k31 = 52 | ||
d31 = -162 | ||||||
Ye et al. 2008[24] | BSPT57 | d33 = 1150
d31 = -520 |
ε33 = 3000 | k31 = 0.52
k33 = 0.91 |
||
Ye et al. 2008[24] | BSPT66 | d33 = 440 | ε33 = 820 | k31 = 0.52
k33 = 0.88 |
||
d31 = -162 | ||||||
Ye et al. 2008[24] | PZNT4.5 | d33 = 2000
d31 = -970 |
ε33 = 5200 | k31 = 0.50
k33 = 0.91 |
||
Ye et al. 2008[24] | PZNT8 | d31 = -1455 | ε33 = 7700 | k31 = 0.60
k33 = 0.94 |
||
Ye et al. 2008[24] | PZNT12 | d33 = 576
d31 = -217 |
ε33 = 870 | k31 = 0.52
k33 = 0.86 |
||
Ye et al. 2008[24] | PMNT33 | d33 = 2820
d31 = -1330 |
ε33 = 8200 | k31 = 0.59
k33 = 0.94 |
||
Matsubara et al. 2004[25] | KCN-modified KNN | d33 = 100
d31 = -180 |
ε33 = 220-330 | kp = 33-39 | 1200 | |
Ryu et al. 2007[26] | KZT modifiedKNN | d33 = 126 | ε33 = 590 | kp = 42 | 58 | |
Matsubara et al. 2005[27] | KCT modified KNN | d33 = 190 | ε33 = | kp = 42 | 1300 | |
Wang et al. 2007[28] | Bi2O3 doped KNN | d33 = 127 | ε33 = 1309 | kp = 28.3 | ||
Jiang et al. 2009[29] | doped KNN-0.005BF | d33 = 257 | ε33 = 361 | kp= 52 | 45 |
Ceramics | ||||||
---|---|---|---|---|---|---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittivity, εr | Electromechanical coupling factor, k | Quality factor |
Berlincourt et al. 1958[30] | BaTiO3 | d15 = 270 | ε11 = 1440 | k15 = 0.57 | ||
d31 = -79 | ε33 = 1680 | k31 = 0.49 | ||||
d33 = 191 | k33 = 0.47 | |||||
Tang et al. 2011[31] | BFO | d33 = 37 | kt = 0.6 | |||
Zhang et al. 1999[32] | PMN-PT | d31 = -74 | ε33 = 1170 | k31 = -0.312 | 283 | |
[33] | PZT-5A | d31 = -171 | ε33 = 1700 | k31 = 0.34 | ||
d33 = 374 | k33 = 0.7 | |||||
[34] | PZT-5H | d15 = 741 | ε11 = 3130 | k15 = 0.68 | 65 | |
d31 = -274 | ε33 = 3400 | k31 = 0.39 | ||||
d33 = 593 | k33 = 0.75 | |||||
[35] | PZT-5K | d33 = 870 | ε33 = 6200 | k33 = 0.75 | ||
Tanaka et al. 2009[36] | PZN7%PT | d33 = 2400 | εr = 6500 | k33 = 0.94
kt = 0.55 |
||
Pang et al. 2010[37] | ANSZ | d33 = 295 | 1.61 | 45.5 | 84 | |
Park et al. 2006[38] | KNN-BZ | d33 = 400 | 2 | 57.4 | 48 | |
Cho et al. 2007[39] | KNN-BT | d33 = 225 | 1.06 | 36.0 | ||
Park et al. 2007[40] | KNN-ST | d33 = 220 | 1.45 | 40.0 | 70 | |
Zhao et al. 2007[41] | KNN-CT | d33 = 241 | 1.32 | 41.0 | ||
Zhang et al. 2006[42] | LNKN | d33 = 314 | ~700 | 41.2 | ||
Saito et al. 2004[43] | KNN-LS | d33 = 270 | 1.38 | 50.0 | ||
Saito et al. 2004[43] | LF4 | d33 = 300 | 1.57 | |||
Tanaka et al. 2009[36] | Oriented LF4 | d33 = 416 | 1.57 | 61.0 | ||
Pang et al. 2010[37] | ANSZ | d33 = 295 | 1.61 | 45.5 | 84 | |
Park et al. 2006[38] | KNN-BZ | d33 = 400 | 2 | 57.4 | 48 | |
Cho et al. 2007[44] | KNN-BT | d33 = 225 | 1.06 | 36.0 | ||
Park et al. 2007[40] | KNN-ST | d33 = 220 | 1.45 | 40.0 | 70 | |
Maurya et al. 2013[45] | KNN-CT | d33 = 241 | 1.32 | 41.0 | ||
Maurya et al. 2013[45] | NBT-BT | (001) Textured samples | d33 = 322 | ... | ||
Gao et al. 2008[46] | NBT-BT-KBT | (001) Textured samples | d33 = 192 | |||
Zou et al. 2016[47] | NBT-KBT | (001) Textured samples | d33 = 134 | kp= 35 | ||
Saito et al. 2004[43] | NBT-KBT | (001) Textured samples | d33 = 217 | kp = 61 | ||
Chang et al. 2009[48] | KNLNTS | (001) Textured samples | d33 = 416 | kp = 64 | ||
Chang et al. 2011[49] | KNNS | (001) Textured samples | d33 = 208 | kp = 63 | ||
Hussain et al. 2013[50] | KNLN | (001) Textured samples | d33 = 192 | kp = 60 | ||
Takao et al. 2006[51] | KNNT | (001) Textured samples | d33 = 390 | kp = 54 | ||
Li et al. 2012[52] | KNN 1 CuO | (001) Textured samples | d33 = 123 | kp = 54 | ||
Cho et al. 2012[53] | KNN-CuO | (001) Textured samples | d33 = 133 | kp = 46 | ||
Hao et al. 2012[54] | NKLNT | (001) Textured samples | d33 = 310 | kp = 43 | ||
Gupta et al. 2014[55] | KNLN | (001) Textured samples | d33 = 254 | |||
Hao et al. 2012[54] | KNN | (001) Textured samples | d33 = 180 | kp = 44 | ||
Bai et al. 2016[56] | BCZT | (001) Textured samples | d33 = 470 | kp = 47 | ||
Ye et al. 2013[57] | BCZT | (001) Textured samples | d33 = 462 | kp = 49 | ||
Schultheiß et al. 2017 [58] | BCZT-T-H | (001) Textured samples | d33 = 580 | |||
OMORI et al. 1990[59] | BCT | (001) Textured samples | d33 = 170 | |||
Chan et al. 2008[60] | Pz34 (doped PbTiO3) | d15 = 43.3 | ε33 = 237 | k31 = 4.6 | 700 | |
d31 = -5.1 | ε33 = 208 | k33 = 39.6 | ||||
d33 = 46 | k15 = 22.8 | |||||
kp = 7.4 | ||||||
Lee et al. 2009[61] | BNKLBT | d33 = 163 | εr = 766 | k31 = 0.188 | 142 | |
ε33 = 444.3 | kt = 0.524 | |||||
kp = 0.328 | ||||||
Sasaki et al. 1999[62] | KNLNTS | εr = 1156 | k31 = 0.26 | 80 | ||
ε33 = 746 | kt = 0.32 | |||||
kp = 0.43 | ||||||
Takenaka et al. 1991[63] | (Bi0.5Na0.5)TiO3 (BNT)-based BNKT | d31 = 46 | εr = 650 | kp = 0.27 | ||
d33 = 150 | k31 = 0.165 | |||||
Tanaka et al. 1960[64] | (Bi0.5Na0.5)TiO3 (BNT)-based BNBT | d31 = 40 | εr = 580 | k31 = 0.19 | ||
d33 = 12.5 | k33 = 0.55 | |||||
Hutson 1960[65] | CdS | d15 = -14.35 | ||||
d31 = -3.67 | ||||||
d33 = 10.65 | ||||||
Schofield et al. 1957[66] | CdS | d31 = -1.53 | ||||
d33 = 2.56 | ||||||
Egerton et al. 1959[67] | BaCaOTi | d31 = -50 | k15 = 0.19 | 400 | ||
d33 = 150 | k31 = 0.49 | |||||
k33 = 0.325 | ||||||
Ikeda et al. 1961[68] | Nb2O6Pb | d31 = -11 | kr = 0.07 | 11 | ||
d33 = 80 | k31 = 0.045 | |||||
k33 = 0.042 | ||||||
Ikeda et al. 1962[69] | C6H17N3O10S | d23 = 84 | k21 = 0.18 | |||
d21 = 22.7 | k22 = 0.18 | |||||
d25 = 22 | k23 = 0.44 | |||||
Brown et al. 1962[70] | BaTiO3 (95%) BaZrO3 (5%) | k15 = 0.15 | 200 | |||
d31 = -60 | k31 = 0.40 | |||||
d33 = 150 | k33 = 0.28 | |||||
Huston 1960[65] | BaNb2O6 (60%) Nb2O6Pb (40%) | d31 = -25 | kr = 0.16 | |||
Baxter et al. 1960[71] | BaNb2O6 (50%) Nb2O6Pb (50%) | d31= -36 | kr = 0.16 | |||
Pullin 1962[72] | BaTiO3 (97%) CaTiO3 (3%) | d31 = -53 | ε33 = 1390 | k15 = 0.39 | ||
d33 = 135 | k31 = 0.17 | |||||
k33 = 0.43 | ||||||
Berlincourt et al. 1960[73] | BaTiO3 (95%) CaTiO3 (5%) | d15 = -257 | ε33 = 1355 | k15 = 0.495 | 500 | |
d31 = -58 | k31 = 0.19 | |||||
d33 = 150 | k33 = 0.49 | |||||
kr = 0.3 | ||||||
Berlincourt et al. 1960[73] | BaTiO3 (96%) PbTiO3 (4%) | d31 = -38 | ε33 = 990 | k15 = 0.34 | ||
d33 = 105 | k31 = 0.14 | |||||
k33 = 0.39 | ||||||
Jaffe et al. 1955[74] | PbHfO3 (50%) PbTiO3 (50%) | d31 = -54 | kr = 0.38 | |||
Kell 1962[75] | Nb2O6Pb (80%) BaNb2O6 (20%) | d31 = 25 | kr = 0.20 | 15 | ||
Brown et al. 1962[70] | Nb2O6Pb (70%) BaNb2O6 (30%) | d31 = -40 | ε33 = 900 | k31 = 0.13 | 350 | |
d33 = 100 | k33 = 0.3 | |||||
kr = 0.24 | ||||||
Berlincourt et al. 1960[76] | PbTiO3 (52%) PbZrO3 (48%) | d15 = 166 | k15 = 0.40 | 1170 | ||
d31 = -43 | k31 = 0.17 | |||||
d33 = 110 | k33 = 0.43 | |||||
kr = 0.28 | ||||||
Berlincourt et al. 1960[77] | PbTiO3 (50%) lead Zirconate (50%) | d15 = 166 | k15 = 0.504 | 950 | ||
d31 = -43 | k31 = 0.23 | |||||
d33 = 110 | k33 = 0.546 | |||||
kr = 0.397 | ||||||
Egerton et al. 1959[67] | KNbO3 (50%) NaNbO3 (50%) | d31 = -32 | 140 | |||
d33 = 80 | k31 = 0.21 | |||||
k33 = 0.51 | ||||||
Brown et al. 1962[70] | NaNbO3 (80%) Cd2Nb2O7 (20%) | d31 = -80 | ε33 = 2000 | k31 = 0.17 | ||
d33 = 200 | k33 = 0.42 | |||||
kr = 0.30 | ||||||
Schofield et al. 1957[66] | BaTiO3 (95%) CaTiO3 (5%) CoCO3 (0.25%) | d31 = -60 | ε33 = 1605 | kr = 0.33 | ||
Pullin 1962[72] | BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) | d31 = -31 | k31 = 0.15 | 1200 | ||
d33 = 79 | k33 = 0.41 | |||||
kr = 0.24 | ||||||
Defaÿ 2011[78] | AlN (Pt-Mo) | d31 = -2.5 | ||||
Shibata et al. 2011[79] | KNN(Pt-Pt) | <001> | d31 = -96.3 | εr = 1100 | ||
d33 = 138.2 | ||||||
Sessler 1981[80] | PVDF | d31 = 17.9 | k31 = 10.3 | |||
d32 = 0.9 | k33 = 12.6 | |||||
d33 = -27.1 | ||||||
Ren et al. 2017[81] | PVDF | d31 = 23 | εr = 106 | |||
d32 = 2 | ||||||
d33 = -21 | ||||||
Tsubouchi et al. 1981[82] | Epi AlN/Al2O3 | <001> | d33 = 5.53 | ε33 = 9.5 | kt = 6.5 | 2490 |
Nanomaterials | |||||
---|---|---|---|---|---|
Reference | Material | Structure | Piezoelectric coefficients, d (pC/N) | Characterization method | Size (nm) |
Ke et al. 2008[83] | NaNbO3 | nanowire | d33 = 0.85-4.26 pm/V | PFM | d = 100 |
Wang et al. 2008[84] | KNbO3 | nanowire | d33 = 0.9 pm/V | PFM | d = 100 |
Zhang et al. 2004[85] | PZT | nanowire | PFM | d = 45 | |
Zhao et al. 2004[86] | ZnO | nanobelt | d33 = 14.3-26.7 pm/V | PFM | w = 360 t = 65 |
Luo et al. 2003[87] | PZT | nanoshell | d33 = 90 pm/V | PFM | d = 700 t = 90 |
Yun et al. 2002[88] | BaTiO3 | nanowire | d33 = 0.5 pm/V | PFM | d = 120 |
Lin et al. 2008[89] | CdS | nanowire | Bending with AFM tip | d = 150 | |
Wang et al. 2007[90] | PZT | nanofiber | piezoelectric voltage constant~0.079 Vm/N | Bending using a tungsten probe | d = 10 |
Wang et al. 2007[91] | BaTiO3 | - | d33 = 45 pC/N | Direct tensile test | d ~ 280 |
Jeong et al. 2014[92] | Alkaline niobate (KNLN) | film | d33 = 310 pC/N | - | |
Park et al. 2010[93] | BaTiO3 | Thin film | d33 = 190 pC/N | ||
Stoppel et al. 2011[94] | AlN | Thin film | d33 =5 pC/N | AFM | |
Lee et al. 2017[95] | WSe2 | 2D nanosheet | d11 = 3.26 pm/V | ||
Zhu et al. 2014[96] | MoS2 | Free standing layer | e11 = 2900pc/m | AFM | |
Zhong et al. 2017[97] | PET/EVA/PET | film | d33 = 6300 pC/N |
References
[edit]- ^ Liu, Huicong; Zhong, Junwen; Lee, Chengkuo; Lee, Seung-Wuk; Lin, Liwei (December 2018). "A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications". Applied Physics Reviews. 5 (4): 041306. Bibcode:2018ApPRv...5d1306L. doi:10.1063/1.5074184. ISSN 1931-9401. S2CID 117451095.
- ^ Hutson, Andrew R. "Piezoelectric devices utilizing aluminum nitride." U.S. Patent 3,090,876, issued May 21, 1963.
- ^ Cook, W. R.; Berlincourt, D. A.; Scholz, F. J. (May 1963). "Thermal Expansion and Pyroelectricity in Lead Titanate Zirconate and Barium Titanate". Journal of Applied Physics. 34 (5): 1392–1398. Bibcode:1963JAP....34.1392C. doi:10.1063/1.1729587. ISSN 0021-8979.
- ^ Warner, A. W.; Onoe, M.; Coquin, G. A. (December 1967). "Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m)". The Journal of the Acoustical Society of America. 42 (6): 1223–1231. Bibcode:1967ASAJ...42.1223W. doi:10.1121/1.1910709. ISSN 0001-4966.
- ^ Smith, R. T.; Welsh, F. S. (May 1971). "Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate". Journal of Applied Physics. 42 (6): 2219–2230. Bibcode:1971JAP....42.2219S. doi:10.1063/1.1660528. ISSN 0021-8979.
- ^ Yamada, Tomoaki; Niizeki, Nobukazu; Toyoda, Hiroo (February 1967). "Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals". Japanese Journal of Applied Physics. 6 (2): 151–155. Bibcode:1967JaJAP...6..151Y. doi:10.1143/jjap.6.151. ISSN 0021-4922. S2CID 122641950.
- ^ Yamada, Tomoaki; Iwasaki, Hiroshi; Niizeki, Nobukazu (September 1969). "Piezoelectric and Elastic Properties of LiTaO3: Temperature Characteristics". Japanese Journal of Applied Physics. 8 (9): 1127–1132. Bibcode:1969JaJAP...8.1127Y. doi:10.1143/jjap.8.1127. ISSN 0021-4922. S2CID 120188917.
- ^ Cao, Hu; Luo, Haosu (January 2002). "Elastic, Piezoelectric and Dielectric Properties of Pb(Mg 1/3 Nb 2/3 )O 3 -38%PbTiO 3 Single Crystal". Ferroelectrics. 274 (1): 309–315. Bibcode:2002Fer...274..309C. doi:10.1080/00150190213965. ISSN 0015-0193. S2CID 122744640.
- ^ Badel, A.; Benayad, A.; Lefeuvre, E.; Lebrun, L.; Richard, C.; Guyomar, D. (April 2006). "Single crystals and nonlinear process for outstanding vibration-powered electrical generators". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 53 (4): 673–684. doi:10.1109/TUFFC.2006.1621494. ISSN 0885-3010. PMID 16615571.
- ^ Kobiakov, I.B. (July 1980). "Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures". Solid State Communications. 35 (3): 305–310. Bibcode:1980SSCom..35..305K. doi:10.1016/0038-1098(80)90502-5. ISSN 0038-1098.
- ^ Zgonik, M.; Bernasconi, P.; Duelli, M.; Schlesser, R.; Günter, P.; Garrett, M. H.; Rytz, D.; Zhu, Y.; Wu, X. (September 1994). "Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals". Physical Review B. 50 (9): 5941–5949. Bibcode:1994PhRvB..50.5941Z. doi:10.1103/physrevb.50.5941. ISSN 0163-1829. PMID 9976963.
- ^ a b c d e f g h Zgonik, M.; Bernasconi, P.; Duelli, M.; Schlesser, R.; Günter, P.; Garrett, M. H.; Rytz, D.; Zhu, Y.; Wu, X. (September 1994). "Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals". Physical Review B. 50 (9): 5941–5949. Bibcode:1994PhRvB..50.5941Z. doi:10.1103/physrevb.50.5941. ISSN 0163-1829. PMID 9976963.
- ^ "LiNbO3 Properties". unitedcrystals.com. Retrieved 2020-01-26.
- ^ Li, Fei; Zhang, Shujun; Xu, Zhuo; Wei, Xiaoyong; Luo, Jun; Shrout, Thomas R. (2010-04-15). "Investigation of Electromechanical Properties and Related Temperature Characteristics in Domain-Engineered Tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Crystals". Journal of the American Ceramic Society. 93 (9): 2731–2734. doi:10.1111/j.1551-2916.2010.03760.x. ISSN 0002-7820.
- ^ a b c d Zhang, Shujun; Laurent, Lebrun; Rhee, Sorah; Randall, Clive A.; Shrout, Thomas R. (2002-07-29). "Shear-mode piezoelectric properties of Pb(Yb1/2Nb1/2)O3–PbTiO3 single crystals". Applied Physics Letters. 81 (5): 892–894. Bibcode:2002ApPhL..81..892Z. doi:10.1063/1.1497435. ISSN 0003-6951.
- ^ a b c Zhang, Shujun; Randall, Clive A.; Shrout, Thomas R. (July 2004). "Dielectric, piezoelectric and elastic properties of tetragonal BiScO3-PbTiO3 single crystal with single domain". Solid State Communications. 131 (1): 41–45. Bibcode:2004SSCom.131...41Z. doi:10.1016/j.ssc.2004.04.016. ISSN 0038-1098.
- ^ Yamashita, Yohachi; Harada, Kouichi (1997-09-30). "Crystal Growth and Electrical Properties of Lead Scandium Niobate-Lead Titanate Binary Single Crystals". Japanese Journal of Applied Physics. 36 (Part 1, No. 9B): 6039–6042. Bibcode:1997JaJAP..36.6039Y. doi:10.1143/jjap.36.6039. ISSN 0021-4922. S2CID 250802280.
- ^ Yasuda, N; Ohwa, H; Kume, M; Hayashi, K; Hosono, Y; Yamashita, Y (July 2001). "Crystal growth and electrical properties of lead indium niobate–lead titanate binary single crystal". Journal of Crystal Growth. 229 (1–4): 299–304. Bibcode:2001JCrGr.229..299Y. doi:10.1016/s0022-0248(01)01161-7. ISSN 0022-0248.
- ^ Guo, Yiping; Luo, Haosu; He, Tianhou; Pan, Xiaoming; Yin, Zhiwen (April 2003). "Electric-field-induced strain and piezoelectric properties of a high Curie temperature Pb(In1/2Nb1/2)O3–PbTiO3 single crystal". Materials Research Bulletin. 38 (5): 857–864. doi:10.1016/s0025-5408(03)00043-6. ISSN 0025-5408.
- ^ Hosono, Yasuharu; Yamashita, Yohachi; Sakamoto, Hideya; Ichinose, Noboru (2003-09-30). "Crystal Growth of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3and Pb(Sc1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Piezoelectric Single Crystals Using the Solution Bridgman Method". Japanese Journal of Applied Physics. 42 (Part 1, No. 9B): 6062–6067. Bibcode:2003JaJAP..42.6062H. doi:10.1143/jjap.42.6062. ISSN 0021-4922. S2CID 120150824.
- ^ Zhang, Shujun; Lebrun, Laurent; Randall, Clive A.; Shrout, Thomas R. (2012-04-25), "High Curie Temperature, High Performance Perovskite Single Crystals in the Pb(Yb1/2 Nb1/2 )O3 -PbTiO3 and BiScO3 -PbTiO3 Systems", Ceramic Transactions Series, John Wiley & Sons, Inc., pp. 85–93, doi:10.1002/9781118380802.ch7, ISBN 978-1-118-38080-2
- ^ Zhang, Shujun; Randall, Clive A.; Shrout, Thomas R. (2003-10-13). "High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system". Applied Physics Letters. 83 (15): 3150–3152. Bibcode:2003ApPhL..83.3150Z. doi:10.1063/1.1619207. ISSN 0003-6951.
- ^ Zhang, Shujun; Randall, Clive A.; Shrout, Thomas R. (October 2003). "Electromechanical Properties in Rhombohedral BiScO3-PbTiO3Single Crystals as a Function of Temperature". Japanese Journal of Applied Physics. 42 (Part 2, No. 10A): L1152–L1154. Bibcode:2003JaJAP..42L1152Z. doi:10.1143/jjap.42.l1152. ISSN 0021-4922. S2CID 120306552.
- ^ a b c d e f Ye, Zuo-Guang; Ye, Zuo-Guang, eds. (April 2008). Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. CRC Press. doi:10.1201/9781439832882 (inactive 2024-11-11). ISBN 978-1-4200-7085-9.
{{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ Matsubara, Masato; Yamaguchi, Toshiaki; Kikuta, Koichi; Hirano, Shin-ichi (2004-10-08). "Sinterability and Piezoelectric Properties of (K,Na)NbO3Ceramics with Novel Sintering Aid". Japanese Journal of Applied Physics. 43 (10): 7159–7163. Bibcode:2004JaJAP..43.7159M. doi:10.1143/jjap.43.7159. ISSN 0021-4922. S2CID 93156866.
- ^ Ryu, Jungho; Choi, Jong-jin; Hahn, Byung-dong; Park, Dong-soo; Yoon, Woon-ha; Kim, Kun-young (December 2007). "Sintering and piezoelectric properties of KNN ceramics doped with KZT". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 54 (12): 2510–2515. doi:10.1109/tuffc.2007.569. ISSN 0885-3010. PMID 18276547. S2CID 1947693.
- ^ Matsubara, Masato; Yamaguchi, Toshiaki; Kikuta, Koichi; Hirano, Shin-ichi (2005-01-11). "Sintering and Piezoelectric Properties of Potassium Sodium Niobate Ceramics with Newly Developed Sintering Aid". Japanese Journal of Applied Physics. 44 (1A): 258–263. Bibcode:2005JaJAP..44..258M. doi:10.1143/jjap.44.258. ISSN 0021-4922. S2CID 121788834.
- ^ Wang, Ying; Li, Yongxiang; Kalantar-zadeh, K.; Wang, Tianbao; Wang, Dong; Yin, Qingrui (2007-09-13). "Effect of Bi3+ ion on piezoelectric properties of K x Na1−x NbO3". Journal of Electroceramics. 21 (1–4): 629–632. doi:10.1007/s10832-007-9246-8. ISSN 1385-3449. S2CID 136916970.
- ^ Jiang, Minhong; Liu, Xinyu; Chen, Guohua; Zhou, Changrong (June 2009). "Dielectric and piezoelectric properties of LiSbO3 doped 0.995 K0.5Na0.5NbO3–0.005BiFeO3 piezoelectric ceramics". Materials Letters. 63 (15): 1262–1265. doi:10.1016/j.matlet.2009.02.066. ISSN 0167-577X.
- ^ Berlincourt, Don; Jaffe, Hans (1958-07-01). "Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate". Physical Review. 111 (1): 143–148. Bibcode:1958PhRv..111..143B. doi:10.1103/physrev.111.143. ISSN 0031-899X.
- ^ Tang, Xianwu; Dai, Jianming; Zhu, Xuebin; Lin, Jianchao; Chang, Qing; Wu, Dajun; Song, Wenhai; Sun, Yuping (2011-11-04). "Thickness-Dependent Dielectric, Ferroelectric, and Magnetodielectric Properties of BiFeO3 Thin Films Derived by Chemical Solution Deposition". Journal of the American Ceramic Society. 95 (2): 538–544. doi:10.1111/j.1551-2916.2011.04920.x. ISSN 0002-7820.
- ^ Zhang, Q.M.; Jianzhong Zhao (November 1999). "Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 46 (6): 1518–1526. doi:10.1109/58.808876. ISSN 0885-3010. PMID 18244349. S2CID 22968703.
- ^ "Future of Ferroelectric Devices", Ferroelectric Devices 2nd Edition, CRC Press, 2009-11-04, pp. 297–338, doi:10.1201/b15852-12 (inactive 2024-11-11), ISBN 978-1-4398-0375-2
{{citation}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ "Your Partner in Smart Solutions". CTS. Retrieved 2020-01-26.
- ^ Morgan Electroceramics Co., Ltd (http://www.morganelectroceramics.com )
- ^ a b Tanaka, Daisuke; Tsukada, Takeo; Furukawa, Masahito; Wada, Satoshi; Kuroiwa, Yoshihiro (2009-09-24). "Thermal Reliability of Alkaline Niobate-Based Lead-Free Piezoelectric Ceramics". Japanese Journal of Applied Physics. 48 (9): 09KD08. Bibcode:2009JaJAP..48iKD08T. doi:10.1143/jjap.48.09kd08. ISSN 0021-4922. S2CID 120110825.
- ^ a b Pang, Xuming; Qiu, Jinhao; Zhu, Kongjun (2010-10-07). "Morphotropic Phase Boundary of Sodium-Potassium Niobate Lead-Free Piezoelectric Ceramics". Journal of the American Ceramic Society. 94 (3): 796–801. doi:10.1111/j.1551-2916.2010.04143.x. ISSN 0002-7820.
- ^ a b Park, Hwi-Yeol; Ahn, Cheol-Woo; Song, Hyun-Cheol; Lee, Jong-Heun; Nahm, Sahn; Uchino, Kenji; Lee, Hyeung-Gyu; Lee, Hwack-Joo (2006-08-07). "Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics". Applied Physics Letters. 89 (6): 062906. Bibcode:2006ApPhL..89f2906P. doi:10.1063/1.2335816. ISSN 0003-6951.
- ^ Cho, Kyung-Hoon; Park, Hwi-Yeol; Ahn, Cheol-Woo; Nahm, Sahn; Uchino, Kenji; Park, Seung-Ho; Lee, Hyeung-Gyu; Lee, Hwack-Joo (June 2007). "Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3?0.05SrTiO3Ceramics". Journal of the American Ceramic Society. 90 (6): 1946–1949. doi:10.1111/j.1551-2916.2007.01715.x. ISSN 0002-7820.
- ^ a b Park, Hwi-Yeol; Cho, Kyung-Hoon; Paik, Dong-Soo; Nahm, Sahn; Lee, Hyeung-Gyu; Kim, Duk-Hee (2007-12-15). "Microstructure and piezoelectric properties of lead-free (1−x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics". Journal of Applied Physics. 102 (12): 124101–124101–5. Bibcode:2007JAP...102l4101P. doi:10.1063/1.2822334. ISSN 0021-8979.
- ^ Zhao, Pei; Zhang, Bo-Ping; Li, Jing-Feng (2007-06-11). "High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature". Applied Physics Letters. 90 (24): 242909. Bibcode:2007ApPhL..90x2909Z. doi:10.1063/1.2748088. ISSN 0003-6951.
- ^ Zhang, Shujun; Xia, Ru; Shrout, Thomas R.; Zang, Guozhong; Wang, Jinfeng (2006-11-15). "Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics". Journal of Applied Physics. 100 (10): 104108–104108–6. Bibcode:2006JAP...100j4108Z. doi:10.1063/1.2382348. ISSN 0021-8979.
- ^ a b c Saito, Yasuyoshi; Takao, Hisaaki; Tani, Toshihiko; Nonoyama, Tatsuhiko; Takatori, Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya (2004-10-31). "Lead-free piezoceramics". Nature. 432 (7013): 84–87. Bibcode:2004Natur.432...84S. doi:10.1038/nature03028. ISSN 0028-0836. PMID 15516921. S2CID 4352954.
- ^ Cho, Kyung-Hoon; Park, Hwi-Yeol; Ahn, Cheol-Woo; Nahm, Sahn; Uchino, Kenji; Park, Seung-Ho; Lee, Hyeung-Gyu; Lee, Hwack-Joo (June 2007). "Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3?0.05SrTiO3Ceramics". Journal of the American Ceramic Society. 90 (6): 1946–1949. doi:10.1111/j.1551-2916.2007.01715.x. ISSN 0002-7820.
- ^ a b Maurya, Deepam; Zhou, Yuan; Yan, Yongke; Priya, Shashank (2013). "Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response". Journal of Materials Chemistry C. 1 (11): 2102. doi:10.1039/c3tc00619k. ISSN 2050-7526.
- ^ Gao, Feng; Liu, Xiang-Chun; Zhang, Chang-Song; Cheng, Li-Hong; Tian, Chang-Sheng (March 2008). "Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth". Ceramics International. 34 (2): 403–408. doi:10.1016/j.ceramint.2006.10.017. ISSN 0272-8842.
- ^ Zou, Hua; Sui, Yongxing; Zhu, Xiaoqing; Liu, Bo; Xue, Jianzhong; Zhang, Jianhao (December 2016). "Texture development and enhanced electromechanical properties in <00l>-textured BNT-based materials". Materials Letters. 184: 139–142. Bibcode:2016MatL..184..139Z. doi:10.1016/j.matlet.2016.08.039. ISSN 0167-577X.
- ^ Chang, Yunfei; Poterala, Stephen F.; Yang, Zupei; Trolier-McKinstry, Susan; Messing, Gary L. (2009-12-07). "⟨001⟩ textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range". Applied Physics Letters. 95 (23): 232905. doi:10.1063/1.3271682. ISSN 0003-6951.
- ^ Chang, Yunfei; Poterala, Stephen; Yang, Zupei; Messing, Gary L. (2011-03-24). "Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3-Based Piezoelectric Ceramics". Journal of the American Ceramic Society. 94 (8): 2494–2498. doi:10.1111/j.1551-2916.2011.04393.x. ISSN 0002-7820.
- ^ Hussain, Ali; Kim, Jin Soo; Song, Tae Kwon; Kim, Myong Ho; Kim, Won Jong; Kim, Sang Su (August 2013). "Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates". Current Applied Physics. 13 (6): 1055–1059. Bibcode:2013CAP....13.1055H. doi:10.1016/j.cap.2013.02.013. ISSN 1567-1739.
- ^ Takao, Hisaaki; Saito, Yasuyoshi; Aoki, Yoshifumi; Horibuchi, Kayo (August 2006). "Microstructural Evolution of Crystalline-Oriented (K0.5Na0.5)NbO3 Piezoelectric Ceramics with a Sintering Aid of CuO". Journal of the American Ceramic Society. 89 (6): 1951–1956. doi:10.1111/j.1551-2916.2006.01042.x. ISSN 0002-7820.
- ^ Li, Yali; Hui, Chun; Wu, Mengjia; Li, Yongxiang; Wang, Youliang (January 2012). "Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique". Ceramics International. 38: S283–S286. doi:10.1016/j.ceramint.2011.04.102. ISSN 0272-8842.
- ^ Cho, H. J.; Kim, M.-H.; Song, T. K.; Lee, J. S.; Jeon, J.-H. (2012-04-13). "Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method". Journal of Electroceramics. 30 (1–2): 72–76. doi:10.1007/s10832-012-9721-8. ISSN 1385-3449. S2CID 138436905.
- ^ a b Hao, Jigong; Ye, Chenggen; Shen, Bo; Zhai, Jiwei (2012-04-25). "Enhanced piezoelectric properties of 〈001〉 textured lead-free (KxNa1 − x)0.946Li0.054NbO3 ceramics with large strain". Physica Status Solidi A. 209 (7): 1343–1349. doi:10.1002/pssa.201127747. ISSN 1862-6300. S2CID 121548719.
- ^ Gupta, Shashaank; Belianinov, Alexei; Baris Okatan, Mahmut; Jesse, Stephen; Kalinin, Sergei V.; Priya, Shashank (2014-04-28). "Fundamental limitation to the magnitude of piezoelectric response of ⟨001⟩pc textured K0.5Na0.5NbO3 ceramic". Applied Physics Letters. 104 (17): 172902. Bibcode:2014ApPhL.104q2902G. doi:10.1063/1.4874648. ISSN 0003-6951.
- ^ Bai, Wangfeng; Chen, Daqin; Li, Peng; Shen, Bo; Zhai, Jiwei; Ji, Zhenguo (February 2016). "Enhanced electromechanical properties in <00l>-textured (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3 lead-free piezoceramics". Ceramics International. 42 (2): 3429–3436. doi:10.1016/j.ceramint.2015.10.139. ISSN 0272-8842.
- ^ Ye, Shukai; Fuh, Jerry; Lu, Li; Chang, Ya-lin; Yang, Jer-Ren (2013). "Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics". RSC Advances. 3 (43): 20693. Bibcode:2013RSCAd...320693Y. doi:10.1039/c3ra43429j. ISSN 2046-2069.
- ^ Schultheiß, Jan; Clemens, Oliver; Zhukov, Sergey; von Seggern, Heinz; Sakamoto, Wataru; Koruza, Jurij (2017-03-03). "Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85 Ca0.15 TiO3 piezoceramics". Journal of the American Ceramic Society. 100 (5): 2098–2107. doi:10.1111/jace.14749. ISSN 0002-7820.
- ^ Omori, T.; Suzuki, H.; Sampei, T.; Yako, K.; Kanero, T. (1990). "High performance soft magnetic material "Ferroperm"". Bulletin of the Japan Institute of Metals. 29 (5): 364–366. doi:10.2320/materia1962.29.364. ISSN 0021-4426.
- ^ Chan et al., 2008
- ^ Lee et al., 2009
- ^ Sasaki, Atsushi; Chiba, Tatsuya; Mamiya, Youichi; Otsuki, Etsuo (1999-09-30). "Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3Systems". Japanese Journal of Applied Physics. 38 (Part 1, No. 9B): 5564–5567. Bibcode:1999JaJAP..38.5564S. doi:10.1143/jjap.38.5564. ISSN 0021-4922. S2CID 118366580.
- ^ Takenaka, Tadashi; Maruyama, Kei-ichi; Sakata, Koichiro (1991-09-30). "(Bi1/2Na1/2)TiO3-BaTiO3System for Lead-Free Piezoelectric Ceramics". Japanese Journal of Applied Physics. 30 (Part 1, No. 9B): 2236–2239. Bibcode:1991JaJAP..30.2236T. doi:10.1143/jjap.30.2236. ISSN 0021-4922. S2CID 124093028.
- ^ Tanaka, Toshio; Tanaka, Shoji (1960-04-15). "Measurement of Piezoelectric Constants of a CdS Crystal". Journal of the Physical Society of Japan. 15 (4): 726. Bibcode:1960JPSJ...15..726T. doi:10.1143/jpsj.15.726. ISSN 0031-9015.
- ^ a b Hutson, A. R. (1960-05-15). "Piezoelectricity and Conductivity in ZnO and CdS". Physical Review Letters. 4 (10): 505–507. Bibcode:1960PhRvL...4..505H. doi:10.1103/physrevlett.4.505. ISSN 0031-9007.
- ^ a b Schofield, D.; Brown, R. F. (1957-05-01). "An Investigation of Some Barium Titanate Compositions for Transducer Applications". Canadian Journal of Physics. 35 (5): 594–607. Bibcode:1957CaJPh..35..594S. doi:10.1139/p57-067. ISSN 0008-4204.
- ^ a b EGERTON, L.; DILLON, DOLORES M. (September 1959). "Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate". Journal of the American Ceramic Society. 42 (9): 438–442. doi:10.1111/j.1151-2916.1959.tb12971.x. ISSN 0002-7820.
- ^ Ikeda, Takuro; Tanaka, Yoichi; Toyoda, Hiroo (1961-12-15). "Piezoelectric Properties of Triglycine Sulphate". Journal of the Physical Society of Japan. 16 (12): 2593–2594. Bibcode:1961JPSJ...16.2593I. doi:10.1143/jpsj.16.2593. ISSN 0031-9015.
- ^ Ikeda, Takuro; Tanaka, Yoichi; Toyoda, Hiroo (January 1962). "Piezoelectric Properties of Triglycine-Sulphate". Japanese Journal of Applied Physics. 1 (1): 13–21. Bibcode:1962JaJAP...1...13I. doi:10.1143/jjap.1.13. ISSN 0021-4922. S2CID 250862299.
- ^ a b c Brown, C.S.; Kell, R.C.; Taylor, R.; Thomas, L.A. (1962). "Piezo-electric materials". Proceedings of the IEE - Part B: Electronic and Communication Engineering. 109 (43): 99. doi:10.1049/pi-b-2.1962.0169. ISSN 0369-8890.
- ^ BAXTER, P.; HELLICAR, N. J. (November 1960). "Electrical Properties of Lead-Barium Niobates and Associated Materials". Journal of the American Ceramic Society. 43 (11): 578–583. doi:10.1111/j.1151-2916.1960.tb13619.x. ISSN 0002-7820.
- ^ a b Pullin, A.D.E. (August 1962). "Statistical mechanics Norman Davidson. McGraw-Hill Publishing Co. Ltd., London: McGraw-Hill Book Company, Inc., New York, 1962. pp. ix + 540. £5.12.6". Talanta. 9 (8): 747. doi:10.1016/0039-9140(62)80173-8. ISSN 0039-9140.
- ^ a b Berlincourt, D.; Jaffe, B.; Jaffe, H.; Krueger, H.H.A. (February 1960). "Transducer Properties of Lead Titanate Zirconate Ceramics". IRE Transactions on Ultrasonic Engineering. 7 (1): 1–6. doi:10.1109/t-pgue.1960.29253. ISSN 0096-1019. S2CID 51638579.
- ^ Jaffe, B.; Roth, R.S.; Marzullo, S. (November 1955). "Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate". Journal of Research of the National Bureau of Standards. 55 (5): 239. doi:10.6028/jres.055.028. ISSN 0091-0635.
- ^ Kell, R.C. (1962). "Properties of niobate high-temperature piezo-electric ceramics". Proceedings of the IEE - Part B: Electronic and Communication Engineering. 109 (22S): 369–373. doi:10.1049/pi-b-2.1962.0065. ISSN 2054-0418.
- ^ Berlincourt, D.; Cmolik, C.; Jaffe, H. (February 1960). "Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions". Proceedings of the IRE. 48 (2): 220–229. doi:10.1109/jrproc.1960.287467. ISSN 0096-8390. S2CID 51673445.
- ^ Berlincourt, D.; Cmolik, C.; Jaffe, H. (February 1960). "Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions". Proceedings of the IRE. 48 (2): 220–229. doi:10.1109/jrproc.1960.287467. ISSN 0096-8390. S2CID 51673445.
- ^ Defaÿ, Emmanuel (2011-03-14). Integration of Ferroelectric and Piezoelectric Thin Films. doi:10.1002/9781118616635. ISBN 9781118616635.
- ^ Shibata, Kenji; Suenaga, Kazufumi; Watanabe, Kazutoshi; Horikiri, Fumimasa; Nomoto, Akira; Mishima, Tomoyoshi (2011-04-20). "Improvement of Piezoelectric Properties of (K,Na)NbO3Films Deposited by Sputtering". Japanese Journal of Applied Physics. 50 (4): 041503. Bibcode:2011JaJAP..50d1503S. doi:10.1143/jjap.50.041503. ISSN 0021-4922. S2CID 97530996.
- ^ Sessler, G. M. (December 1981). "Piezoelectricity in polyvinylidenefluoride". The Journal of the Acoustical Society of America. 70 (6): 1596–1608. Bibcode:1981ASAJ...70.1596S. doi:10.1121/1.387225. ISSN 0001-4966.
- ^ Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff (2017-03-01). "A Guided Wave Sensor Enabling Simultaneous Wavenumber-Frequency Analysis for Both Lamb and Shear-Horizontal Waves". Sensors. 17 (3): 488. Bibcode:2017Senso..17..488R. doi:10.3390/s17030488. ISSN 1424-8220. PMC 5375774. PMID 28257065.
- ^ Tsubouchi, K.; Sugai, K.; Mikoshiba, N. (1981). "AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3and AlN/Si". 1981 Ultrasonics Symposium. IEEE: 375–380. doi:10.1109/ultsym.1981.197646.
- ^ Ke, Tsung-Ying; Chen, Hsiang-An; Sheu, Hwo-Shuenn; Yeh, Jien-Wei; Lin, Heh-Nan; Lee, Chi-Young; Chiu, Hsin-Tien (2008-05-27). "Sodium Niobate Nanowire and Its Piezoelectricity". The Journal of Physical Chemistry C. 112 (24): 8827–8831. doi:10.1021/jp711598j. ISSN 1932-7447.
- ^ Wang, J.; Stampfer, C.; Roman, C.; Ma, W. H.; Setter, N.; Hierold, C. (December 2008). "Piezoresponse force microscopy on doubly clamped KNbO3 nanowires". Applied Physics Letters. 93 (22): 223101. Bibcode:2008ApPhL..93v3101W. doi:10.1063/1.3000385. ISSN 0003-6951.
- ^ Zhang, X. Y.; Zhao, X.; Lai, C. W.; Wang, J.; Tang, X. G.; Dai, J. Y. (November 2004). "Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays". Applied Physics Letters. 85 (18): 4190–4192. Bibcode:2004ApPhL..85.4190Z. doi:10.1063/1.1814427. hdl:10397/4241. ISSN 0003-6951.
- ^ Zhao, Min-Hua; Wang, Zhong-Lin; Mao, Scott X. (April 2004). "Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope". Nano Letters. 4 (4): 587–590. Bibcode:2004NanoL...4..587Z. doi:10.1021/nl035198a. ISSN 1530-6984.
- ^ Luo, Yun; Szafraniak, Izabela; Zakharov, Nikolai D.; Nagarajan, Valanoor; Steinhart, Martin; Wehrspohn, Ralf B.; Wendorff, Joachim H.; Ramesh, Ramamoorthy; Alexe, Marin (2003-07-21). "Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate". Applied Physics Letters. 83 (3): 440–442. Bibcode:2003ApPhL..83..440L. doi:10.1063/1.1592013. ISSN 0003-6951. S2CID 123413166.
- ^ Yun, Wan Soo; Urban, Jeffrey J.; Gu, Qian; Park, Hongkun (May 2002). "Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy". Nano Letters. 2 (5): 447–450. Bibcode:2002NanoL...2..447Y. doi:10.1021/nl015702g. ISSN 1530-6984.
- ^ Lin, Yi-Feng; Song, Jinhui; Ding, Yong; Lu, Shih-Yuan; Wang, Zhong Lin (2008-01-14). "Piezoelectric nanogenerator using CdS nanowires". Applied Physics Letters. 92 (2): 022105. Bibcode:2008ApPhL..92b2105L. doi:10.1063/1.2831901. hdl:1853/27469. ISSN 0003-6951. S2CID 123588080.
- ^ Wang, J.; Sandu, C. S.; Colla, E.; Wang, Y.; Ma, W.; Gysel, R.; Trodahl, H. J.; Setter, N.; Kuball, M. (2007-03-26). "Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires". Applied Physics Letters. 90 (13): 133107. Bibcode:2007ApPhL..90m3107W. doi:10.1063/1.2716842. ISSN 0003-6951. S2CID 123121473.
- ^ Wang, Zhaoyu; Hu, Jie; Suryavanshi, Abhijit P.; Yum, Kyungsuk; Yu, Min-Feng (October 2007). "Voltage Generation from Individual BaTiO3Nanowires under Periodic Tensile Mechanical Load". Nano Letters. 7 (10): 2966–2969. Bibcode:2007NanoL...7.2966W. doi:10.1021/nl070814e. ISSN 1530-6984. PMID 17894515.
- ^ Jeong, Chang Kyu; Park, Kwi-Il; Ryu, Jungho; Hwang, Geon-Tae; Lee, Keon Jae (May 2014). "Nanogenerators: Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler (Adv. Funct. Mater. 18/2014)". Advanced Functional Materials. 24 (18): 2565. doi:10.1002/adfm.201470112. ISSN 1616-301X.
- ^ Park, Kwi-Il; Xu, Sheng; Liu, Ying; Hwang, Geon-Tae; Kang, Suk-Joong L.; Wang, Zhong Lin; Lee, Keon Jae (2010-12-08). "Piezoelectric BaTiO3Thin Film Nanogenerator on Plastic Substrates". Nano Letters. 10 (12): 4939–4943. Bibcode:2010NanoL..10.4939P. doi:10.1021/nl102959k. ISSN 1530-6984. PMID 21050010.
- ^ Stoppel, F.; Schröder, C.; Senger, F.; Wagner, B.; Benecke, W. (2011). "AlN-based piezoelectric micropower generator for low ambient vibration energy harvesting". Procedia Engineering. 25: 721–724. doi:10.1016/j.proeng.2011.12.178. ISSN 1877-7058.
- ^ Lee, Ju-Hyuck; Park, Jae Young; Cho, Eun Bi; Kim, Tae Yun; Han, Sang A.; Kim, Tae-Ho; Liu, Yanan; Kim, Sung Kyun; Roh, Chang Jae; Yoon, Hong-Joon; Ryu, Hanjun (2017-06-06). "Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators". Advanced Materials. 29 (29): 1606667. Bibcode:2017AdM....2906667L. doi:10.1002/adma.201606667. ISSN 0935-9648. PMID 28585262. S2CID 5516996.
- ^ Zhu, Hanyu; Wang, Yuan; Xiao, Jun; Liu, Ming; Xiong, Shaomin; Wong, Zi Jing; Ye, Ziliang; Ye, Yu; Yin, Xiaobo; Zhang, Xiang (2014-12-22). "Observation of piezoelectricity in free-standing monolayer MoS2". Nature Nanotechnology. 10 (2): 151–155. doi:10.1038/nnano.2014.309. ISSN 1748-3387. PMID 25531085.
- ^ Zhong, Junwen; Zhong, Qize; Zang, Xining; Wu, Nan; Li, Wenbo; Chu, Yao; Lin, Liwei (July 2017). "Flexible PET/EVA-based piezoelectret generator for energy harvesting in harsh environments". Nano Energy. 37: 268–274. Bibcode:2017NEne...37..268Z. doi:10.1016/j.nanoen.2017.05.034. hdl:10356/83115. ISSN 2211-2855.