List of hyperaccumulators
Appearance
This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Selenium (Se) and Zinc (Zn).
See also:
- Hyperaccumulators table – 2: Nickel
- Hyperaccumulators table – 3: Cd, Cs, Co, Pu, Ra, Sr, U, radionuclides, hydrocarbons, organic solvents, etc.
Hyperaccumulators table – 1
[edit]Contaminant | Accumulation rates (in mg/kg dry weight) | Binomial name | English name | H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant | Notes | Sources |
---|---|---|---|---|---|---|
Al | A- | Agrostis castellana | highland bentgrass | As(A), Mn(A), Pb(A), Zn(A) | Origin: Portugal. | [1]: 898 |
Al | 1000 | Hordeum vulgare | Barley | 25 records of plants. | [1]: 891 [2] | |
Al | Hydrangea spp. | Hydrangea (a.k.a. Hortensia) | ||||
Al | Aluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[3] | Melastoma malabathricum L. | Blue Tongue, or Native Lassiandra | P competes with Al and reduces uptake.[4] | ||
Al | Solidago hispida (Solidago canadensis L.) | Hairy Goldenrod | Origin Canada. | [1]: 891 [2] | ||
Al | 100 | Vicia faba | Horse Bean | [1]: 891 [2] | ||
Ag | 10-1200 | Salix miyabeana | Willow | Ag(T) | Seemed able to adapt to high AgNO3 concentrations on a long timeline | [5] |
Ag | Brassica napus | Rapeseed plant | Cr, Hg, Pb, Se, Zn | Phytoextraction | [1]: 19 [6] | |
Ag | Salix spp. | Osier spp. | Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [1]: 19 | |
Ag | Amanita strobiliformis | European Pine Cone Lepidella | Ag(H) | Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas | [9] | |
Ag | 10-1200 | Brassica juncea | Indian Mustard | Ag(H) | Can form alloys of silver-gold-copper | [10] |
As | 100 | Agrostis capillaris L. | Common Bent Grass, Browntop. (= A. tenuris) | Al(A), Mn(A), Pb(A), Zn(A) | [1]: 891 | |
As | H- | Agrostis castellana | Highland Bent Grass | Al(A), Mn(A), Pb(A), Zn(A) | Origin Portugal. | [1]: 898 |
As | 1000 | Agrostis tenerrima Trin. | Colonial bentgrass | 4 records of plants | [1]: 891 [11] | |
As | 2-1300 | Cyanoboletus pulverulentus | Ink Stain Bolete | contains dimethylarsinic acid | Europe | [12] |
As | 27,000 (fronds)[13] | Pteris vittata L. | Ladder brake fern or Chinese brake fern | 26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[14] | Root extracts reduce arsenate to arsenite.[15] | |
As | 100-7000 | Sarcosphaera coronaria | pink crown, violet crown-cup, or violet star cup | As(H) | Ectomycorrhizal ascomycete, known from Europe | [16][17] |
Be | No reports found for accumulation | [1]: 891 | ||||
Cr | Azolla spp. | mosquito fern, duckweed fern, fairy moss, water fern | [1]: 891 [18] | |||
Cr | H- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cu(H), Hg(A), Pb(A) | Origin India. Aquatic emergent species. | [1]: 898 [19] |
Cr | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | Cultivated in agriculture. | [1]: 19, 898 [20] | |
Cr | Brassica napus | Rapeseed plant | Ag, Hg, Pb, Se, Zn | Phytoextraction | [6][1]: 19 | |
Cr | A- | Vallisneria americana | Tape Grass | Cd(H), Pb(H) | Native to Europe and North Africa. Widely cultivated in the aquarium trade. | [1]: 898 |
Cr | 1000 | Dicoma niccolifera | 35 records of plants | [1]: 891 | ||
Cr | roots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[21] in concentrations 10,000 times that in the surrounding water.[22] | Eichhornia crassipes | Water Hyacinth | Cd(H), Cu(A), Hg(H),[21] Pb(H),[21] Zn(A). Also Cs, Sr, U,[21][23] and pesticides.[24] | Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[25] 'The troublesome weed' – hence an excellent source of bioenergy.[21] | [1]: 898 |
Cr | Helianthus annuus | Sunflower | Phytoextraction and rhizofiltration | [1]: 19, 898 | ||
Cr | A- | Hydrilla verticillata | Hydrilla | Cd(H), Hg(H), Pb(H) | [1]: 898 | |
Cr | Medicago sativa | Alfalfa | [1]: 891 [26] | |||
Cr | Pistia stratiotes | Water lettuce | Cd(T), Hg(H), Cr(H), Cu(T) | [1]: 891, 898 [27] | ||
Cr | Salix spp. | Osier spp. | Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [1]: 19 | |
Cr | Salvinia molesta | Kariba weeds or water ferns | Cr(H), Ni(H), Pb(H), Zn(A) | [1]: 891, 898 [28] | ||
Cr | Spirodela polyrhiza | Giant Duckweed | Cd(H), Ni(H), Pb(H), Zn(A) | Native to North America. | [1]: 891, 898 [28] | |
Cr | 100 | Jamesbrittenia fodina Hilliard Sutera fodina Wild |
[1]: 891 [29][30] | |||
Cr | A- | Thlaspi caerulescens | Alpine Pennycress, Alpine Pennygrass | Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[31] | [1]: 19, 891, 898 [32][33][34] |
Cu | 9000 | Aeollanthus biformifolius | [35] | |||
Cu | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Pb(H), Zn(H) | Origin Japan. | [1]: 898 | |
Cu | A- | Azolla filiculoides | Pacific mosquitofern | Ni(A), Pb(A), Mn(A) | Origin Africa. Floating plant. | [1]: 898 |
Cu | H- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cr(H), Hg(A), Pb(A) | Origin India. Aquatic emergent species. | [1]: 898 [19] |
Cu | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | cultivated | [1]: 19, 898 [20] | |
Cu | H- | Vallisneria americana | Tape Grass | Cd(H), Cr(A), Pb(H) | Native to Europe and North Africa. Widely cultivated in the aquarium trade. | [1]: 898 |
Cu | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]: 898 | |
Cu | 1000 | Haumaniastrum robertii (Lamiaceae) |
Copper flower | 27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[36] | [1]: 891 [33] | |
Cu | Helianthus annuus | Sunflower | Phytoextraction with rhizofiltration | [1]: 898 [33] | ||
Cu | 1000 | Larrea tridentata | Creosote Bush | 67 records of plants. Origin U.S. | [1]: 891 [33] | |
Cu | H- | Lemna minor | Duckweed | Pb(H), Cd(H), Zn(A) | Native to North America and widespread worldwide. | [1]: 898 |
Cu | Ocimum centraliafricanum | Copper plant | Cu(T), Ni(T) | Origin Southern Africa | [37] | |
Cu | T- | Pistia stratiotes | Water Lettuce | Cd(T), Hg(H), Cr(H) | Pantropical. Origin South U.S.A. Aquatic herb. | [1]: 898 |
Cu | Thlaspi caerulescens | Alpine pennycress, Alpine Pennycress, Alpine Pennygrass | Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction. Cu noticeably limits its growth.[34] | [1]: 19, 891, 898 [31][32][33][34] | |
Mn | A- | Agrostis castellana | Highland Bent Grass | Al(A), As(A), Pb(A), Zn(A) | Origin Portugal. | [1]: 898 |
Mn | Azolla filiculoides | Pacific mosquitofern | Cu(A), Ni(A), Pb(A) | Origin Africa. Floating plant. | [1]: 898 | |
Mn | Brassica juncea L. | Indian mustard | [1]: 19 [20] | |||
Mn | 23,000 (maximum) 11,000 (average) leaf | Chengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.Huang | koshiabura | Origin Japan. Forest tree. | [38] | |
Mn | Helianthus annuus | Sunflower | Phytoextraction and rhizofiltration | [1]: 19 | ||
Mn | 1000 | Macadamia neurophylla (now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast) |
28 records of plants | [1]: 891 [39] | ||
Mn | 200 | [1]: 891 | ||||
Hg | A- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) | Origin India. Aquatic emergent species. | [1]: 898 [19] |
Hg | Brassica napus | Rapeseed plant | Ag, Cr, Pb, Se, Zn | Phytoextraction | [1]: 19 [6] | |
Hg | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]: 898 | |
Hg | H- | Hydrilla verticillata | Hydrilla | Cd(H), Cr(A), Pb(H) | [1]: 898 | |
Hg | 1000 | Pistia stratiotes | Water lettuce | Cd(T), Cr(H), Cu(T) | 35 records of plants | [1]: 891, 898 [33][40][full citation needed] |
Hg | Salix spp. | Osier spp. | Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [1]: 19 | |
Mo | 1500 | Thlaspi caerulescens (Brassicaceae) | Alpine pennycress | Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) | phytoextraction | [1]: 19, 891, 898 [31][32][33][34] |
Naphthalene | Festuca arundinacea | Tall Fescue | Increases catabolic genes and the mineralization of naphthalene. | [41] | ||
Naphthalene | Trifolium hirtum | Pink clover, rose clover | Decreases catabolic genes and the mineralization of naphthalene. | [41] | ||
Pb | A- | Agrostis castellana | 'Highland Bent Grass | Al(A), As(H), Mn(A), Zn(A) | Origin Portugal. | [1]: 898 |
Pb | Ambrosia artemisiifolia | Ragweed | [6] | |||
Pb | Armeria maritima | Seapink Thrift | [6] | |||
Pb | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Cu(H), Zn(H) | Origin Japan. | [1]: 898 | |
Pb | A- | Azolla filiculoides | Pacific mosquitofern | Cu(A), Ni(A), Mn(A) | Origin Africa. Floating plant. | [1]: 898 |
Pb | A- | Bacopa monnieri | Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola | Cd(H), Cr(H), Cu(H), Hg(A) | Origin India. Aquatic emergent species. | [1]: 898 [19] |
Pb | H- | Brassica juncea | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | 79 recorded plants. Phytoextraction | [1]: 19, 891, 898 [6][20][31][33][34][42] |
Pb | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Se, Zn | Phytoextraction | [1]: 19 [6] | |
Pb | Brassica oleracea | Ornamental Kale and Cabbage, Broccoli | [6] | |||
Pb | H- | Vallisneria americana | Tape Grass | Cd(H), Cr(A), Cu(H) | Native to Europe and North Africa. Widely cultivated in the aquarium trade. | [1]: 898 |
Pb | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]: 898 | |
Pb | Festuca ovina | Blue Sheep Fescue | [6] | |||
Pb | Ipomoea trifida | Morning glory | Phytoextraction and rhizofiltration | [1]: 19, 898 [6][7][42] | ||
Pb | H- | Hydrilla verticillata | Hydrilla | Cd(H), Cr(A), Hg(H) | [1]: 898 | |
Pb | H- | Lemna minor | Duckweed | Cd(H), Cu(H), Zn(H) | Native to North America and widespread worldwide. | [1]: 898 |
Pb | Salix viminalis | Common Osier | Cd, U, Zn,[7] Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.);[1]: 19 Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes) | [7] | |
Pb | H- | Salvinia molesta | Kariba weeds or water ferns | Cr(H), Ni(H), Pb(H), Zn(A) | Origin India. | [1]: 898 |
Pb | Spirodela polyrhiza | Giant Duckweed | Cd(H), Cr(H), Ni(H), Zn(A) | Native to North America. | [1]: 891, 898 [28] | |
Pb | Thlaspi caerulescens (Brassicaceae) | Alpine pennycress, Alpine pennygrass | Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) | Phytoextraction. | [1]: 19, 891, 898 [31][32][33][34] | |
Pb | Thlaspi rotundifolium | Round-leaved Pennycress | [6] | |||
Pb | Triticum aestivum | Common Wheat | [6] | |||
Se | .012-20 | Amanita muscaria | Fly agaric | Cap contains higher concentrations than stalks[43] | ||
Se | Brassica juncea | Indian mustard | Rhizosphere bacteria enhance accumulation.[44] | [1]: 19 | ||
Se | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Pb, Zn | Phytoextraction. | [1]: 19 [6] | |
Se | Low rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass. | Chara canescens Desv. & Lois | Muskgrass | Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[45] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[46] | [47] | |
Se | Bassia scoparia (a.k.a. Kochia scoparia) |
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweed | U,[7] Cr, Pb, Hg, Ag, Zn | Perchlorate (wetland halophytes). Phytoextraction. | [1]: 19, 898 | |
Se | Salix spp. | Osier spp. | Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19 Cd, Pb, U, Zn (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes). | [1]: 19 | |
Zn | A- | Agrostis castellana | Highland Bent Grass | Al(A), As(H), Mn(A), Pb(A) | Origin Portugal. | [1]: 898 |
Zn | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Cu(H), Pb(H) | Origin Japan. | [1]: 898 | |
Zn | Brassicaceae | Mustards, mustard flowers, crucifers or cabbage family | Cd(H), Cs(H), Ni(H), Sr(H) | Phytoextraction | [1]: 19 | |
Zn | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A). | Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) | [1]: 19, 898 [20] | |
Zn | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Pb, Se | Phytoextraction | [1]: 19 [6] | |
Zn | Helianthus annuus | Sunflower | Phytoextraction and rhizofiltration | [1]: 19 [7] | ||
Zn | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U,[23] and pesticides.[24] | Pantropical/Subtropical, 'the troublesome weed'. | [1]: 898 | |
Zn | Salix viminalis | Common Osier | Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products;[1]: 19 Cd, Pb, U (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8] | Phytoextraction. Perchlorate (wetland halophytes). | [7] | |
Zn | A- | Salvinia molesta | Kariba weeds or water ferns | Cr(H), Ni(H), Pb(H), Zn(A) | Origin India. | [1]: 898 |
Zn | 1400 | Silene vulgaris (Moench) Garcke (Caryophyllaceae) | Bladder campion | Ernst et al. (1990) | ||
Zn | Spirodela polyrhiza | Giant Duckweed | Cd(H), Cr(H), Ni(H), Pb(H) | Native to North America. | [1]: 891, 898 [28] | |
Zn | H-10,000 | Thlaspi caerulescens (Brassicaceae) | Alpine pennycress | Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) | 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[31] | [1]: 19, 891, 898 [32][33][34][42] |
Zn | Trifolium pratense | Red Clover | Nonmetal accumulator. | Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[31] |
Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.
References
[edit]- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg McCutcheon, Steven C.; Schnoor, Jerald L. (2003). Phytoremediation: Transformation and Control of Contaminants. Environmental Science and Technology. Wiley. ISBN 978-0-471-39435-8.
- ^ a b c Grauer, U. E.; Horst, W. J. (September 1990). "Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.)". Plant and Soil. 127 (1). Springer: 13–21. Bibcode:1990PlSoi.127...13G. doi:10.1007/BF00010832. JSTOR 42938620. S2CID 31201518.
- ^ Toshihiro Watanabe; Mitsuru Osaki; Teruhiko Yoshihara; Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil. 201 (2): 165–173. doi:10.1023/A:1004341415878. S2CID 8649008.
- ^ Shoellhorn, Rick; Richardson, Alexis A. (2005). "Warm Climate Production Guidelines for Japanese Hydrangeas". EDIS. 2005 (4). Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. doi:10.32473/edis-ep177-2005. ENH910/EP177.
- ^ Nissim, Werther G.; Frederic E., Pitre; Kadri, Hafssa; Desjardins, Dominic; Labrecque, Michel (2014). "Early Response Of Willow To Increasing Silver Concentration Exposure". International Journal of Phytoremediation. 16 (4): 660–670. Bibcode:2014IJPhy..16..660G. doi:10.1080/15226514.2013.856840. PMID 24933876. S2CID 1000307.
- ^ a b c d e f g h i j k l m n Fiegl, Joseph L.; McDonnell, Bryan P.; Kostel, Jill A.; Finster, Mary E.; Gray, Kimberly A. "A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils". Civil and Environmental Engineering. Evanston, IL: McCormick School of Engineering, Northwestern University. Archived from the original on 24 February 2011.
- ^ a b c d e f g h i j k Schmidt, Ulrich (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". Plant and Soil Interaction. Journal of Environmental Quality. 32 (6): 1939–54. doi:10.2134/jeq2003.1939. PMID 14674516.
- ^ a b c d e f Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology. 15 (5): 461–7. Bibcode:2006Ecotx..15..461Y. doi:10.1007/s10646-006-0081-5. PMID 16703454. S2CID 5930089.
- ^ Borovička, Jan; Řanda, Zdeněk; Jelínek, Emil; Kotrba, Pavel; Dunn, Colin E. (November 2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research. 111 (11): 1339–1344. doi:10.1016/j.mycres.2007.08.015. PMID 18023163.
- ^ Haverkamp, Richard G.; Marshall, Aaron T.; van Agterveld, Dimitri (2007). "Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo". Journal of Nanoparticle Research. 9 (4): 697–700. Bibcode:2007JNR.....9..697H. doi:10.1007/s11051-006-9198-y. S2CID 56368453.
- ^ Porter, E. K.; Peterson, P. J. (November 1975). "Arsenic accumulation by plants on mine waste (United Kingdom)". Science of the Total Environment. 4 (4). Elsevier: 365–371. Bibcode:1975ScTEn...4..365P. doi:10.1016/0048-9697(75)90028-5.
- ^ Braeuer, Simone; Goessler, Walter; Kameník, Jan; Konvalinková, Tereza; Žigová, Anna; Borovička, Jan (2018). "Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)". Food Chemistry. 242: 225–231. doi:10.1016/j.foodchem.2017.09.038. PMC 6118325. PMID 29037683.
- ^ Junru Wang; Fang-Jie Zhao; Andrew A. Meharg; Andrea Raab; Joerg Feldmann; Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol. 130 (3): 1552–61. doi:10.1104/pp.008185. PMC 166674. PMID 12428020.
- ^ Tu, Cong; Ma, Lena Q.; Bondada, Bhaskhar (2002). "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". Journal of Environmental Quality. 31 (5): 1671–5. Bibcode:2002JEnvQ..31.1671T. doi:10.2134/jeq2002.1671. PMID 12371185.
- ^ Duan, Gui-Lan; Zhu, Yong-Guan; Tong, Yi-Ping; Cai, Chao; Kneer, Ralf (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology. 138 (1): 461–9. doi:10.1104/pp.104.057422. PMC 1104199. PMID 15834011.
- ^ Stijve, Tjakko; Vellinga, Else C.; Herrmann, André (1990). "Arsenic accumulation in some higher fungi". Persoonia - Molecular Phylogeny and Evolution of Fungi. 14 (2): 161–166.
- ^ Borovička, Jan (2004). "Nová lokalita baňky velkokališné" [New location for Sarcosphaera coronaria]. Mykologický sborník (in Czech). 81 (3). Prague: Czech Mycological Society: 97–99.
- ^ Priel, A. "Purification of industrial wastewater with the Azolla fern". World Water and Environmental Engineering. 18.
- ^ a b c d Gupta, Manisha; Sinha, Sarita; Chandra, Prakash (1994). "Uptake and toxicity of metals in Scirpus lacustris L. and Bacopa monnieri l.". Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology. 29 (10). Taylor & Francis: 2185–2202. Bibcode:1994JESHA..29.2185G. doi:10.1080/10934529409376173.
- ^ a b c d e Bennett, Lindsay E.; Burkhead, Jason L.; Hale, Kerry L.; Terry, Norman; Pilon, Marinus; Pilon-Smits, Elizabeth A. H. (March 2003). "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". Journal of Environmental Quality. 32 (2): 432–440. Bibcode:2003JEnvQ..32..432B. doi:10.2134/jeq2003.4320. PMID 12708665.
- ^ a b c d e Duke, James A. (1983). "Handbook of Energy Crops". NewCROP. West Lafayette, IN: Center for New Crops and Plant Products, Purdue University. Retrieved 3 January 2023.
- ^ "Biology Briefs". BioScience. 26 (3): 223–224. 1976. doi:10.2307/1297259. JSTOR 1297259.
- ^ a b c d e "Phytoremediation of Radionuclides". Colorado State University. Archived from the original on 11 January 2012.
- ^ a b c d e Lan, Jun-Kang (March 2004). "Recent developments of phytoremediation". Journal of Geological. Hazards and Environmental Preservation. 15 (1): 46–51. Archived from the original on 20 May 2011.
- ^ Göhl, Bo; International Foundation for Science (1981). Tropical feeds. Feeds information summaries and nutritive values. FAO Animal Production and Health. Vol. 12. Stockholm: Food and Agriculture Organization of the United Nations.
- ^ Kirk J., Tiemann; Gardea-Torresdey, Jorge L.; Gamez, Gerardo; Dokken, Kenneth M. (May 1998). "Interference studies for multi-metal binding by Medicago sativa (alfalfa)" (PDF). Proceedings of the 1998 Conference on Hazardous Waste Research. Metals. Conference on Hazardous Waste Research. Snowbird, UT. pp. 63–75.
- ^ Sen, A. K.; Mondal, N. G.; Mandal, S. (1 January 1987). "Studies of Uptake and Toxic Effects of Cr(VI) on Pistia stratiotes". Water Science and Technology. 19 (1–2). International Water Association: 119–127. doi:10.2166/wst.1987.0194.
- ^ a b c d Srivastav, R. K.; Gupta, S. K.; Nigam, K. D. P.; Vasudevan, P. (July 1994). "Treatment of chromium and nickel in wastewater by using aquatic plants". Water Research. 28 (7): 1631–1638. Bibcode:1994WatRe..28.1631S. doi:10.1016/0043-1354(94)90231-3.
- ^ Wild, Hiram (1974). "Indigenous plants and chromium in Rhodesia". Kirkia. 9 (2). Zimbabwe's National Herbarium and Botanic Garden: 233–241. JSTOR 23502019.
- ^ Brooks, Robert R.; Yang, Xing-hua (August 1984). "Elemental Levels and Relationships in the Endemic Serpentine Flora of the Great Dyke, Zimbabwe and Their Significance as Controlling Factors for the Flora". Taxon. 33 (3). Wiley: 392. doi:10.2307/1220976. JSTOR 1220976.
- ^ a b c d e f g Delorme, Thierry A.; Gagliardi, Joel V.; Angle, J. Scott; Chaney, Rufus L. (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Canadian Journal of Microbiology. 47 (8). Canadian Science Publishing: 773–776. doi:10.1139/w01-067. PMID 11575505.
- ^ a b c d e Majeti Narasimha Vara Prasad (2005). "Nickelophilous plants and their significance in phytotechnologies". Brazilian Journal of Plant Physiology. 17 (1): 113–128. doi:10.1590/s1677-04202005000100010.
- ^ a b c d e f g h i j Baker, Alan J. M.; Brooks, Robert R. (1989). "Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry". Biorecovery. 1: 81–126. ISSN 0269-7572.
- ^ a b c d e f g Lombi, Enzo; Zhao, Fang-Jie; Dunham, Sarah J.; McGrath, Steve P. (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality. 30 (6): 1919–1926. Bibcode:2001JEnvQ..30.1919L. doi:10.2134/jeq2001.1919. PMID 11789997.
- ^ Morrison, Richard S.; Brooks, Robert R.; Reeves, Roger D.; Malaisse, François (1979). "Copper and cobalt uptake by metallophytes from Zaïre" (PDF). Plant and Soil. 53 (4). Kluwer: 535–539. Bibcode:1979PlSoi..53..535M. doi:10.1007/bf02140724. hdl:2268/266081. S2CID 42737843.
- ^ Brooks, Robert R. (1977). "Copper and cobalt uptake by Haumaniustrum species". Plant and Soil. 48 (2): 541–544. Bibcode:1977PlSoi..48..541B. doi:10.1007/BF02187261. S2CID 12181174.
- ^ Howard-Williams, Clive (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology. 58 (3): 745–763. Bibcode:1970JEcol..58..745H. doi:10.2307/2258533. JSTOR 2258533.
- ^ Mizuno, Takafumi; Emori, Kanae; Ito, Shin-ichiro (2013). "Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. and Sav. and its correlation with calcium accumulation". Soil Science and Plant Nutrition. 59 (4): 591–602. Bibcode:2013SSPN...59..591M. doi:10.1080/00380768.2013.807213. S2CID 97458219.
- ^ Baker, Alan J. M.; Walker, Philip L. (1990). "Ecophysiology of Metal Uptake by Tolerant Plants". In Shaw, A. Jonathan (ed.). Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL.: CRC Press. pp. 155–177. ISBN 0-8493-6852-9.
- ^ Atri 1983
- ^ a b Siciliano, Steven D.; Germida, James J.; Banks, Kathy; Greer, Charles W. (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology. 69 (1): 483–9. Bibcode:2003ApEnM..69..483S. doi:10.1128/AEM.69.1.483-489.2003. PMC 152433. PMID 12514031.
- ^ a b c Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised (PDF) (Technical report). Interstate Technology and Regulatory Council. 2009. PHYTO-3.
- ^ Stijve, Tjakko (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 164 (3): 201–3. doi:10.1007/BF01263031. PMID 562040. S2CID 31058569.
- ^ de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiology. 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMC 32133. PMID 9952452.
- ^ X-ray absorption spectroscopy speciation analysis.
- ^ Average Se concentration of 22 μg/L supplied over a 24-d experimental period.
- ^ Z.-Q. Lin; M.P. de Souza; I. J. Pickering; N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality. 31 (6): 2104–10. Bibcode:2002JEnvQ..31.2104L. doi:10.2134/jeq2002.2104. PMID 12469862.