Jump to content

Kim Lewis (academic)

From Wikipedia, the free encyclopedia
Kim Lewis
NationalityAmerican
Occupation(s)Researcher, author and academic
Academic background
EducationB.S., Biology (1976)
Ph.D., Biochemistry (1980)
Alma materMoscow University
Academic work
InstitutionsNortheastern University

Kim Lewis is an American researcher, author and academic. He is a University Distinguished Professor and the director of Antimicrobial Discovery Center at Northeastern University.

Lewis' research is focused on antimicrobial tolerance which limits the ability of antibiotics to eradicate an infection; and on antimicrobial drug discovery.[1]

He is a fellow of the American Association for the Advancement of Science,[2] and of the American Academy of Microbiology.[3]

Education

[edit]

Lewis received a B.S. in biology in 1976 and a Ph.D. in biochemistry in 1980, both from Moscow University.[4]

Career

[edit]

In 1976, Lewis joined Moscow University as a researcher. He continued working there until 1984, when he applied to emigrate to the USA. He moved to the United States in 1987, where he joined University of Wisconsin as a research associate. In 1988, he left University of Wisconsin and joined MIT as an assistant professor. He left MIT to join University of Maryland, Baltimore in 1994.

Lewis joined Tufts University as a Research Associate Professor in 1997 and taught there until 2001, when he joined Northeastern University. In 2004, he became a distinguished research fellow, and in 2011, a distinguished professor at Northeastern University.[5]

Research and work

[edit]

Lewis' research is focused on antimicrobial tolerance which limits the ability of antibiotics to eradicate an infection; and on antimicrobial drug discovery. He discovered that biofilm recalcitrance to treatment is due to the presence of dormant persister cells tolerant to killing by antibiotics. His research further showed that persisters are cells with low level of ATP, which drops as a result of stochastic variation in expression of energy producing components.[6][7] He discovered that acyldepsipeptide (ADEP) kills persisters in S. aureus and other bacteria by activating the Clp protease, forcing the cell to self-digest.[8] A new antimicrobial, lassomycin, that his team discovered from an uncultured bacterium, kills M. tuberculosis, including persister cells, by activating the C1 ATPase subunit of the ClpC1P1P2 protease, causing ATP depletion and death.[9]

In early 2000s, Lewis began working in collaboration with Slava Epstein to solve the problem that uncultured bacteria could not be grown in vitro. They reasoned uncultured bacteria will grow in their natural environment, and developed a diffusion chamber where they are incubated in their natural environment. In a paper published in Science in 2002, they reported growth of uncultured bacteria in a diffusion chamber.[10][11][12]

Lewis has been involved in antimicrobial drug discovery for over a decade. They developed methods to mine uncultured bacteria for novel compounds. Of especial interest is teixobactin, a novel cell wall acting antibiotic that binds to different precursors of cell wall polymers. This is the first antibiotic that acts without detectable resistance.[13] [14] The paper describing the discovery of teixobactin was the most discussed publication of that year, according to Altmetric.[15]

More recently, Lewis and his group refocused their program on discovery of compounds acting against Gram negative pathogens, and discovered a new class of antibiotics, darobactins, inhibitors of BamA, an essential protein of the outer membrane.[16] [17]

Awards and honors

[edit]
  • 2006 - Member, Faculty of 1000 in the Pharmacology & Drug Discovery section [18]
  • 2009 - NIH Director’s Transformative Award
  • 2011 - Fellow, American Academy of Microbiology
  • 2013 - Lester O. Krampitz Lecture, Case Western Reserve University
  • 2015 - Honorary Lecture, NYU School of Medicine
  • 2015 - Lecture, Biomedical Research Council of the US Congress
  • 2017 - NIH Director’s Walls Lecture
  • 2018 - Highly Cited Researcher, Clarivate Analytics[19]
  • 2023 - American Society for Microbiology Award for Applied and Biotechnological Research

Books

[edit]
  • Bacterial Resistance to Antimicrobials: Mechanisms, Genetics, Medical Practice and Public Health (2001)
  • Persister Cells and Infectious Disease (2019)

References

[edit]
  1. ^ "Kim Lewis - Google Scholar".
  2. ^ "AAAS Honors Accomplished Scientists as 2018 Elected Fellows".
  3. ^ "This Solver of Scientific Paradoxes Has Been Named a Fellow of the American Association For the Advancement of Science". 27 November 2018.
  4. ^ "Kim Lewis".
  5. ^ "Kim Lewis - CV" (PDF).
  6. ^ Keren, I.; Wu, Y.; Inocencio, J.; Mulcahy, L. R.; Lewis, K. (2013). "Killing by bactericidal antibiotics does not depend on reactive oxygen species". Science. 339 (6124): 1213–1216. doi:10.1126/science.1232688. PMID 23471410. S2CID 24746892.
  7. ^ Schumacher, M. A.; Balani, P.; Min, J.; Chinnam, N. B.; Hansen, S.; Vulić, M.; Lewis, K.; Brennan, R. G. (2015). "PMC7502270". Nature. 524 (7563): 59–64. doi:10.1038/nature14662. PMC 7502270. PMID 26222023.
  8. ^ Conlon, B.; Nakayasu, E.; Fleck, L.; Lafleur, M.; Isabella, V.; Coleman, K.; Leonard, S.; Smith, R.; Adkins, J.; Lewis, K. (2013). "PMC4031760". Nature. 503 (7476): 365–370. doi:10.1038/nature12790. PMC 4031760. PMID 24226776.
  9. ^ Gavrish, E.; Sit, C. S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A.; Torrey, H.; Akopian, T.; Mueller, A.; Epstein, S.; Goldberg, A.; Clardy, J.; Lewis, K. (2014). "PMC4060151". Chemistry & Biology. 21 (4): 509–518. doi:10.1016/j.chembiol.2014.01.014. PMC 4060151. PMID 24684906.
  10. ^ Kaeberlein, T.; Lewis, K.; Epstein, S. S. (2002). "Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment". Science. 296 (5570): 1127–1129. doi:10.1126/science.1070633. PMID 12004133. S2CID 28437864.
  11. ^ d'Onofrio, A.; Crawford, J. M.; Stewart, E. J.; Witt, K.; Gavrish, E.; Epstein, S.; Clardy, J.; Lewis, K. (2010). "Siderophores from Neighboring Organisms Promote the Growth of Uncultured Bacteria". Chemistry & Biology. 17 (3): 254–264. doi:10.1016/j.chembiol.2010.02.010. PMC 2895992. PMID 20338517.
  12. ^ Khatchadourian, Raffi (June 13, 2016). "The Unseen". The New Yorker.
  13. ^ Ling, L. L.; Schneider, T.; Peoples, A. J.; Spoering, A. L.; Engels, I.; Conlon, B. P.; Mueller, A.; Schäberle, T. F.; Hughes, D. E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V. A.; Cohen, D. R.; Felix, C. R.; Fetterman, K. A.; Millett, W. P.; Nitti, A. G.; Zullo, A. M.; Chen, C.; Lewis, K. (2015). "A new antibiotic kills pathogens without detectable resistance". Nature. 517 (7535): 455–459. doi:10.1038/nature14098. PMC 7414797. PMID 25561178.
  14. ^ Shukla, Rhythm; Lavore, Francesca; Maity, Sourav; Derks, Maik G. N.; Jones, Chelsea R.; Vermeulen, Bram J. A.; Melcrová, Adéla; Morris, Michael A.; Becker, Lea Marie; Wang, Xiaoqi; Kumar, Raj; Medeiros-Silva, João; van Beekveld RAM; Bonvin AMJJ; Lorent, Joseph H.; Lelli, Moreno; Nowick, James S.; MacGillavry, Harold D.; Peoples, Aaron J.; Spoering, Amy L.; Ling, Losee L.; Hughes, Dallas E.; Roos, Wouter H.; Breukink, Eefjan; Lewis, Kim; Weingarth, Markus (August 2022). "10.1038/s41586-022-05019-y". Nature. 608 (7922): 390–396. doi:10.1038/s41586-022-05019-y. PMC 9365693. PMID 35922513.
  15. ^ Ling, L. L.; Schneider, T.; Peoples, A. J.; Spoering, A. L.; Engels, I.; Conlon, B. P.; Mueller, A.; Schäberle, T. F.; Hughes, D. E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V. A.; Cohen, D. R.; Felix, C. R.; Fetterman, K. A.; Millett, W. P.; Nitti, A. G.; Zullo, A. M.; Chen, C.; Lewis, K. (2015). "A new antibiotic kills pathogens without detectable resistance". Nature. 517 (7535): 455–459. doi:10.1038/nature14098. PMC 7414797. PMID 25561178.
  16. ^ Imai, Y.; Meyer, K. J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; Honrao, C.; Ma, X.; Guo, J. J.; Makriyannis, A.; Linares-Otoya, L.; Böhringer, N.; Wuisan, Z. G.; Kaur, H.; Wu, R.; Mateus, A.; Typas, A.; Savitski, M. M.; Espinoza, J. L.; O'Rourke, A.; Nelson, K. E.; Hiller, S.; Noinaj, N.; Schäberle, T. F.; d'Onofrio, A.; Lewis, K. (2019). "A new antibiotic selectively kills Gram-negative pathogens". Nature. 576 (7787): 459–464. doi:10.1038/s41586-019-1791-1. PMC 7188312. PMID 31747680.
  17. ^ Böhringer, N.; Green, R.; Liu, Y.; Mettal, U.; Marner, M.; Modaresi, S. M.; Jakob, R. P.; Wuisan, Z. G.; Maier, T.; Iinishi, A.; Hiller, S.; Lewis, K.; Schäberle, T. F. (2021). "Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs". Microbiology Spectrum. 9 (3): e01535-21. doi:10.1128/spectrum.01535-21. PMC 8694152. PMID 34937193.
  18. ^ "The Faculty".
  19. ^ "Six Northeastern Professors Named to List of Highly Cited Researchers Around The Globe". 9 January 2019.
[edit]