Jump to content

Kathryn Zurek

From Wikipedia, the free encyclopedia
Kathryn Zurek
Born
Minnesota, U.S.
Alma materBethel University
University of Washington
Scientific career
FieldsPhysics
InstitutionsCalifornia Institute of Technology
Thesis Looking beyond standard neutrino and axion phenomenology and cosmology
Doctoral advisorDavid B. Kaplan

Kathryn M. Zurek is an American physicist and professor of theoretical physics at the California Institute of Technology. Her research interests primarily lie at the intersection of particle physics with cosmology and particle astrophysics.[1] She is known for her theories on dark matter's "hidden valleys", also known as hidden sectors.[2][3]

Biography

[edit]

Zurek was born and raised in Minnesota.[3] She studied for a bachelor's degree in physics at Bethel University, where she graduated summa cum laude in 2001[3] and was awarded the 2001 Seaborg Nobel Travel Award to participate in Nobel Foundation events and present to Nobel laureates.[4] She then received a Ph.D. in physics from the University of Washington in 2006. She was a postdoctoral fellow at the University of Wisconsin–Madison and served as the David Schramm Fellow in Fermilab's theoretical astrophysics group.[3]

From 2009 to 2014, Zurek was an assistant and then associate professor at the University of Michigan. In 2014, she joined the Joint Particle Theory Group at the Berkeley Center for Theoretical Physics. She became a professor of theoretical physics at Caltech in 2019.[5][3]

Selected awards and honors

[edit]

Selected publications

[edit]

In the press

[edit]
  • “Berkeley Leans into Search for Light Dark Matter,” 10 June 2019, Symmetry Magazine.[17]
  • “In Search for Unseen Matter, Physicists Turn to Dark Sector,” 24 March 2017, Science.[18]
  • "New Techniques Could Target More Exotic Dark Matter," 13 October 2016, Scientific American.[19]
  • "Physics - Synopsis: Spotting Dark Matter with Supermaterials,"14 September 2016, APS Physics.[20]
  • "Hunting for Dark Matter's Hidden Valley," 24 May 2016 in Berkeley Lab News Center.[21]
  • "Physicists Widen the Search for Dark Matter Particles," June 2014, APS News.[22]
  • "Dark Matter Hunt Appears to be Zeroing In on a Leading Contender," 22 July 2013 in Wired Science.[23]
  • "Tentative dark matter hints with shadow dark sector," 16 April 2013 in New Scientist.[24]
  • "Peering Back 13 Billion Years, Through a Gravitational Lens," 29 April 2011 in Science.[25]
  • "The dark side of antimatter," by Rachel Courtland, 25 November 2010 in New Scientist.[26]
  • "Super-sensitive tool key to dark matter claim" 9 July 2008 in Nature.[27]

References

[edit]
  1. ^ "Kathryn Zurek". Kathryn Zurek. Retrieved 2022-04-10.
  2. ^ Roberts Jr., Glenn (24 May 2016). "Hunting for Dark Matter's 'Hidden Valley'". Lawrence Berkeley National Laboratory. Retrieved 15 January 2021.
  3. ^ a b c d e f "Kathryn Zurek". Simons Foundation. 16 August 2017. Retrieved 15 January 2021.
  4. ^ Smetanka, Mary Jane (June 1, 2001). "Nobel traveler". Star Tribune. p. 26. Retrieved November 12, 2022 – via Newspapers.com.
  5. ^ Clavin, Whitney (2 July 2020). "Caltech Professor of Theoretical Physics Wins Simons Investigator Award". Pasadena Now. Retrieved 15 January 2021.
  6. ^ "Fellows". American Physical Society. Retrieved 15 January 2021.
  7. ^ Schutz, Katelin; Zurek, Kathryn M. (2016-09-14). "Detectability of Light Dark Matter with Superfluid Helium". Physical Review Letters. 117 (12): 121302. arXiv:1604.08206. Bibcode:2016PhRvL.117l1302S. doi:10.1103/PhysRevLett.117.121302. ISSN 0031-9007. PMID 27689261. S2CID 36465591.
  8. ^ Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Zurek, Kathryn M. (2016-06-30). "The trispectrum in the Effective Field Theory of Large Scale Structure". Journal of Cosmology and Astroparticle Physics. 2016 (6): 052. arXiv:1604.01770. Bibcode:2016JCAP...06..052B. doi:10.1088/1475-7516/2016/06/052. ISSN 1475-7516. S2CID 118562387.
  9. ^ Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M. (2016-01-07). "Superconducting Detectors for Superlight Dark Matter". Physical Review Letters. 116 (1): 011301. arXiv:1504.07237. Bibcode:2016PhRvL.116a1301H. doi:10.1103/PhysRevLett.116.011301. ISSN 0031-9007. PMID 26799009. S2CID 30524296.
  10. ^ Kearney, John; Yoo, Hojin; Zurek, Kathryn M. (2015-06-25). "Is a Higgs vacuum instability fatal for high-scale inflation?". Physical Review D. 91 (12): 123537. arXiv:1503.05193. Bibcode:2015PhRvD..91l3537K. doi:10.1103/PhysRevD.91.123537. ISSN 1550-7998. S2CID 117900395.
  11. ^ Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. (2013-06-07). "Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure". Physical Review D. 87 (11): 115007. arXiv:1302.3898. Bibcode:2013PhRvD..87k5007T. doi:10.1103/PhysRevD.87.115007. ISSN 1550-7998. S2CID 118535064.
  12. ^ Gresham, Moira I.; Kim, Ian-Woo; Zurek, Kathryn M. (2011-06-13). "On models of new physics for the Tevatron top A FB". Physical Review D. 83 (11): 114027. arXiv:1103.3501. Bibcode:2011PhRvD..83k4027G. doi:10.1103/PhysRevD.83.114027. ISSN 1550-7998. S2CID 119218728.
  13. ^ Cohen, Timothy; Phalen, Daniel J.; Pierce, Aaron; Zurek, Kathryn M. (2010-09-03). "Asymmetric dark matter from a GeV hidden sector". Physical Review D. 82 (5): 056001. arXiv:1005.1655. Bibcode:2010PhRvD..82e6001C. doi:10.1103/PhysRevD.82.056001. ISSN 1550-7998. S2CID 119159310.
  14. ^ Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M. (2009-06-23). "Asymmetric dark matter". Physical Review D. 79 (11): 115016. arXiv:0901.4117. Bibcode:2009PhRvD..79k5016K. doi:10.1103/PhysRevD.79.115016. ISSN 1550-7998. S2CID 17954932.
  15. ^ Hooper, Dan; Zurek, Kathryn M. (2008-04-11). "Natural supersymmetric model with MeV dark matter". Physical Review D. 77 (8): 087302. arXiv:0801.3686. Bibcode:2008PhRvD..77h7302H. doi:10.1103/PhysRevD.77.087302. ISSN 1550-7998. S2CID 55455486.
  16. ^ Strassler, Matthew J.; Zurek, Kathryn M. (2007). "Echoes of a hidden valley at hadron colliders". Physics Letters B. 651 (5–6): 374–379. arXiv:hep-ph/0604261. Bibcode:2007PhLB..651..374S. doi:10.1016/j.physletb.2007.06.055. S2CID 119042766.
  17. ^ Roberts, Glenn Jr. "Berkeley leans into search for light dark matter". symmetry magazine. Retrieved 2022-04-10.
  18. ^ Cho, Adrian (2017-03-24). "In search for unseen matter, physicists turn to dark sector". Science. 355 (6331): 1251–1252. doi:10.1126/science.355.6331.1251. ISSN 0036-8075. PMID 28336618.
  19. ^ Mandelbaum, Ryan F. "New Techniques Could Target More Exotic Dark Matter". Scientific American. Retrieved 2022-04-10.
  20. ^ Anonymous (2016-09-14). "Spotting Dark Matter with Supermaterials". Physics. 9. Bibcode:2016PhyOJ...9S.100.. doi:10.1103/Physics.9.s100.
  21. ^ Roberts, Glenn Jr. (2016-05-24). "Hunting for Dark Matter's 'Hidden Valley'". News Center. Retrieved 2022-04-10.
  22. ^ "Physicists Widen the Search for Dark Matter Particles". www.aps.org. Retrieved 2022-04-10.
  23. ^ Ouellette, Jennifer. "Dark-Matter Hunt Appears to Be Zeroing In on a Leading Contender". Wired. ISSN 1059-1028. Retrieved 2022-04-10.
  24. ^ "Tentative dark matter hits fit with shadow dark sector". New Scientist. Retrieved 2022-04-10.
  25. ^ Bhattacharjee, Yudhijit (2011-04-29). "Peering Back 13 Billion Years, Through a Gravitational Lens". Science. 332 (6029): 522. doi:10.1126/science.332.6029.522. ISSN 0036-8075. PMID 21527685.
  26. ^ "The dark side of antimatter". New Scientist. Retrieved 2022-04-10.
  27. ^ Brumfiel, Geoff (2008-07-01). "Super-sensitive tool key to dark-matter claim". Nature. 454 (7201): 148–149. doi:10.1038/454148b. ISSN 1476-4687. PMID 18615045. S2CID 4334277.
[edit]