Jump to content

KOMDIV-32

From Wikipedia, the free encyclopedia
KOMDIV-32
General information
Launched1999; 25 years ago (1999)
Designed byNIISI
Common manufacturers
  • NIISI
  • Mikron
  • MVC Nizhny Novgorod
Performance
Max. CPU clock rate33 MHz to 125 MHz
Architecture and classification
Technology node0.25 μm to 0.5 μm
Instruction setMIPS I
Physical specifications
Cores
  • 1

The KOMDIV-32 (Russian: КОМДИВ-32) is a family of 32-bit microprocessors developed and manufactured by the Scientific Research Institute of System Development (NIISI) of the Russian Academy of Sciences.[1][2] The manufacturing plant of NIISI is located in Dubna on the grounds of the Kurchatov Institute.[3] The KOMDIV-32 processors are intended primarily for spacecraft applications and many of them are radiation hardened (rad-hard).

These microprocessors are compatible with MIPS R3000 and have an integrated MIPS R3010 compatible floating-point unit.[4]

Overview

[edit]
Designation Production start (year) Process (nm) Clock rate (MHz) Remarks
Russian English
1В812 1V812 ? 500 33 [5]
1890ВМ1Т 1890VM1T 2000 500 50 rad-hard[4][6][7][8]
1890ВМ2Т 1890VM2T 2003 350 90 [4][6][7][8][9]
1990ВМ2Т 1990VM2T 2008 ? 350 66 rad-hard[4][6][7][10]
5890ВМ1Т 5890VM1Т 2009 500 33 rad-hard[4][6][7][8][11]
5890ВЕ1Т 5890VE1Т 2009 500 33 rad-hard[4][6][7][8][11][12]
1900ВМ2Т 1900VM2T 2012 350 66 rad-hard[4][6][7][8][11][12]
1904ВЕ1Т 1904VE1T 2016 350 40 [6][13]
1907ВМ014 1907VM014 2016 250 100 rad-hard[4][6][8]
1907ВМ038 1907VM038 2016 ? 250 125 rad-hard[4][6][10][14][15][16]
1907ВМ044 1907VM044 2016 ? 250 66 rad-hard[4][6][8][14][15][17]
1907ВМ056 1907VM056 2016 ? 250 100 rad-hard[4][6][8][14][15]
1907ВМ066 1907VM066 2016 ? 250 100 rad-hard[4][6][8][14][15]
1907ВК016 1907VK016 ? 250 100 rad-hard[4][8][14][15]

Details

[edit]

1V812

[edit]
  • 0.5 μm CMOS process, 3-layer metal
  • 108-pin ceramic Quad Flat Package (QFP)
  • 1.5 million transistors, 8KB L1 instruction cache, 8KB L1 data cache, compatible with IDT 79R3081E

1890VM1T

[edit]
  • 0.5 μm CMOS process

1890VM2T

[edit]
  • 0.35 μm CMOS process

1990VM2T

[edit]

5890VM1Т

[edit]

5890VE1Т

[edit]
  • 0.5 μm SOI CMOS process
  • 240-pin ceramic QFP
  • radiation tolerance to not less than 200 kRad, working temperature from -60 to 125 °C
  • System-on-a-chip (SoC) including PCI master / slave, 16 GPIO, 3 UART, 3 32-bit timers
  • cache (8KB each for data and instructions)
  • second-sourced by MVC Nizhny Novgorod under the name 1904VE1T (Russian: 1904ВЕ1Т) with a clock rate of 40 MHz

1900VM2T

[edit]
  • development name Rezerv-32
  • 0.35 μm SOI CMOS process
  • 108-pin ceramic QFP
  • radiation tolerance to not less than 200 kRad, working temperature from -60 to 125 °C
  • triple modular redundancy on block level with self-healing
  • both registers and cache (4KB each for data and instructions) are implemented as dual interlocked storage cells (DICE)

1907VM014

[edit]
  • 0.25 μm SOI CMOS process; manufacturing to be moved to Mikron
  • 256-pin ceramic QFP
  • production planned for 2016 (previously this device was planned to go into production in 2014 under the name 1907VE1T or 1907VM1T)[12]
  • radiation tolerance to not less than 200 kRad
  • SoC including SpaceWire, GOST R 52070-2003 (Russian version of MIL-STD-1553), SPI, 32 GPIO, 2 UART, 3 timers, JTAG
  • cache (8KB each for data and instructions)

1907VM038

[edit]

1907VM044

[edit]
  • development name Obrabotka-10
  • 0.25 μm SOI CMOS process; manufactured by Mikron
  • 256-pin ceramic QFP
  • SoC including SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, 32 GPIO, 2 UART, 3 timers, JTAG
  • radiation tolerance to not less than 200 kRad
  • triple modular redundancy in processor core
  • both registers and cache (4KB each for data and instructions) are implemented as dual interlocked storage cells (DICE) with 1 parity bit per byte for cache and Hamming code for registers
  • SECDED for external memory
  • working temperature from -60 to 125 °C

1907VM056

[edit]

1907VM066

[edit]

1907VK016

[edit]

See also

[edit]

References

[edit]
  1. ^ "Отделение разработки вычислительных систем" [Computer systems development branch] (in Russian). Moscow: NIISI. Retrieved 9 September 2016.
  2. ^ "First Russian MIPS-Compatible Microprocessor". 22 December 2007. Retrieved 6 September 2016.
  3. ^ Шунков, Валерий (28 March 2014). "Российская микроэлектроника для космоса: кто и что производит" [Russian microelectronics for space applications: Who manufactures what] (in Russian). Geektimes. Retrieved 8 April 2017.
  4. ^ a b c d e f g h i j k l m "Разработка СБИС - Развитие микропроцессоров с архитектурой КОМДИВ" [VLSI development - Development of microprocessors using the KOMDIV architecture] (in Russian). Moscow: NIISI. Retrieved 6 September 2016.
  5. ^ "ОДНОКРИСТАЛЬНЫЙ МИКРОПРОЦЕССОР С АРХИТЕКТУРОЙ MIPS 1B812" [Single-chip microprocessor with MIPS architecture 1V812] (in Russian). Moscow: NIISI. Archived from the original on 21 July 2006. Retrieved 7 September 2016.
  6. ^ a b c d e f g h i j k l "Изделия отечественного производства" [Domestic products] (in Russian). Moscow: AO "ENPO SPELS". Retrieved 1 September 2016.
  7. ^ a b c d e f "Микросхемы вычислительных средств, включая микропроцессоры, микроЭВМ, цифровые процессоры обработки сигналов и контроллеры" [Integrated circuits for computing devices, including microprocessors, microcomputers, digital signal processors, and controllers] (in Russian). Promelektronika VPK. Archived from the original on 28 March 2017. Retrieved 25 October 2017.
  8. ^ a b c d e f g h i j "Перспективные ЭВМ семейства БАГЕТ" [Future computers in the BAGET family] (PDF) (in Russian). Moscow: AO KB "Korund-M". 2017. Retrieved 1 April 2021.
  9. ^ "1890ВМ2Т" [1890VM2T] (PDF) (in Russian). Moscow: NIISI. Retrieved 9 September 2016.
  10. ^ a b Костарев, Иван Николаевич (28 January 2017). "Методика обеспечения сбоеустойчивости ПЛИС для ракетно-космического применения" [Method for ensuring the fail-safe operation of FPGA in rocket and space applications] (in Russian). Moscow: Moscow Institute of Electronics and Mathematics. Archived from the original on 28 March 2017. Retrieved 11 February 2020.
  11. ^ a b c Osipenko, Pavel Nikolaevich (12 October 2011). "Аспекты радиационной стойкости интегральных микросхем" [Aspects of the radiation resistance of integrated circuits] (PDF) (in Russian). Moscow: NIISI. Archived from the original (PDF) on 25 April 2012. Retrieved 7 September 2016.
  12. ^ a b c Osipenko, Pavel Nikolaevich (25 May 2012). "ИЗДЕЛИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА СИСТЕМНЫХ ИССЛЕДОВАНИЙ РАН ДЛЯ АЭРОКОСМИЧЕСКИХ ПРИЛОЖЕНИЙ" [ELECTRONIC COMPONENTS OF SCIENTIFIC RESEARCH INSTITUTE FOR SYSTEM ANALYSIS RAS FOR SPACE APPLICATION] (PDF). Scientific experiments on small satellites: apparatus, data collection and control, electronic components (in Russian). Tarusa. pp. 139–148. ISSN 2075-6836. Retrieved 7 September 2016.
  13. ^ "Микропроцессоры и микроконтроллеры" [Microprocessors and microcontrollers] (in Russian). Nizhny Novgorod: MVC. 2014. Archived from the original on 10 March 2017. Retrieved 29 March 2018.
  14. ^ a b c d e Serdin, O.V. (2017). "The special radiation-hardened processors for new highly informative experiments in space". Journal of Physics: Conference Series. 798 (1): 012010. Bibcode:2017JPhCS.798a2010S. doi:10.1088/1742-6596/798/1/012010.
  15. ^ a b c d e Serdin, O.V. (13 October 2016). "The special radiation-hardened processors for new highly informative experiments in space" (PDF). Retrieved 5 April 2017.
  16. ^ "Микросхема 1907ВМ038" [Integrated circuit 1907VM038] (PDF) (in Russian). Moscow: NIISI. Retrieved 28 March 2017.
  17. ^ "Микросхема 1907ВМ044" [Integrated circuit 1907VM044] (PDF) (in Russian). Moscow: NIISI. Retrieved 3 April 2017.