From Wikipedia, the free encyclopedia
Gives the value of a summation involving the floor function
In mathematics , Hermite's identity , named after Charles Hermite , gives the value of a summation involving the floor function . It states that for every real number x and for every positive integer n the following identity holds:[ 1] [ 2]
∑
k
=
0
n
−
1
⌊
x
+
k
n
⌋
=
⌊
n
x
⌋
.
{\displaystyle \sum _{k=0}^{n-1}\left\lfloor x+{\frac {k}{n}}\right\rfloor =\lfloor nx\rfloor .}
Proof by algebraic manipulation [ edit ]
Split
x
{\displaystyle x}
into its integer part and fractional part ,
x
=
⌊
x
⌋
+
{
x
}
{\displaystyle x=\lfloor x\rfloor +\{x\}}
. There is exactly one
k
′
∈
{
1
,
…
,
n
}
{\displaystyle k'\in \{1,\ldots ,n\}}
with
⌊
x
⌋
=
⌊
x
+
k
′
−
1
n
⌋
≤
x
<
⌊
x
+
k
′
n
⌋
=
⌊
x
⌋
+
1.
{\displaystyle \lfloor x\rfloor =\left\lfloor x+{\frac {k'-1}{n}}\right\rfloor \leq x<\left\lfloor x+{\frac {k'}{n}}\right\rfloor =\lfloor x\rfloor +1.}
By subtracting the same integer
⌊
x
⌋
{\displaystyle \lfloor x\rfloor }
from inside the floor operations on the left and right sides of this inequality, it may be rewritten as
0
=
⌊
{
x
}
+
k
′
−
1
n
⌋
≤
{
x
}
<
⌊
{
x
}
+
k
′
n
⌋
=
1.
{\displaystyle 0=\left\lfloor \{x\}+{\frac {k'-1}{n}}\right\rfloor \leq \{x\}<\left\lfloor \{x\}+{\frac {k'}{n}}\right\rfloor =1.}
Therefore,
1
−
k
′
n
≤
{
x
}
<
1
−
k
′
−
1
n
,
{\displaystyle 1-{\frac {k'}{n}}\leq \{x\}<1-{\frac {k'-1}{n}},}
and multiplying both sides by
n
{\displaystyle n}
gives
n
−
k
′
≤
n
{
x
}
<
n
−
k
′
+
1.
{\displaystyle n-k'\leq n\,\{x\}<n-k'+1.}
Now if the summation from Hermite's identity is split into two parts at index
k
′
{\displaystyle k'}
, it becomes
∑
k
=
0
n
−
1
⌊
x
+
k
n
⌋
=
∑
k
=
0
k
′
−
1
⌊
x
⌋
+
∑
k
=
k
′
n
−
1
(
⌊
x
⌋
+
1
)
=
n
⌊
x
⌋
+
n
−
k
′
=
n
⌊
x
⌋
+
⌊
n
{
x
}
⌋
=
⌊
n
⌊
x
⌋
+
n
{
x
}
⌋
=
⌊
n
x
⌋
.
{\displaystyle {\begin{aligned}\sum _{k=0}^{n-1}\left\lfloor x+{\frac {k}{n}}\right\rfloor &=\sum _{k=0}^{k'-1}\lfloor x\rfloor +\sum _{k=k'}^{n-1}(\lfloor x\rfloor +1)=n\,\lfloor x\rfloor +n-k'\\[8pt]&=n\,\lfloor x\rfloor +\lfloor n\,\{x\}\rfloor =\left\lfloor n\,\lfloor x\rfloor +n\,\{x\}\right\rfloor =\lfloor nx\rfloor .\end{aligned}}}
Proof using functions [ edit ]
Consider the function
f
(
x
)
=
⌊
x
⌋
+
⌊
x
+
1
n
⌋
+
…
+
⌊
x
+
n
−
1
n
⌋
−
⌊
n
x
⌋
{\displaystyle f(x)=\lfloor x\rfloor +\left\lfloor x+{\frac {1}{n}}\right\rfloor +\ldots +\left\lfloor x+{\frac {n-1}{n}}\right\rfloor -\lfloor nx\rfloor }
Then the identity is clearly equivalent to the statement
f
(
x
)
=
0
{\displaystyle f(x)=0}
for all real
x
{\displaystyle x}
. But then we find,
f
(
x
+
1
n
)
=
⌊
x
+
1
n
⌋
+
⌊
x
+
2
n
⌋
+
…
+
⌊
x
+
1
⌋
−
⌊
n
x
+
1
⌋
=
f
(
x
)
{\displaystyle f\left(x+{\frac {1}{n}}\right)=\left\lfloor x+{\frac {1}{n}}\right\rfloor +\left\lfloor x+{\frac {2}{n}}\right\rfloor +\ldots +\left\lfloor x+1\right\rfloor -\lfloor nx+1\rfloor =f(x)}
Where in the last equality we use the fact that
⌊
x
+
p
⌋
=
⌊
x
⌋
+
p
{\displaystyle \lfloor x+p\rfloor =\lfloor x\rfloor +p}
for all integers
p
{\displaystyle p}
. But then
f
{\displaystyle f}
has period
1
/
n
{\displaystyle 1/n}
. It then suffices to prove that
f
(
x
)
=
0
{\displaystyle f(x)=0}
for all
x
∈
[
0
,
1
/
n
)
{\displaystyle x\in [0,1/n)}
. But in this case, the integral part of each summand in
f
{\displaystyle f}
is equal to 0. We deduce that the function is indeed 0 for all real inputs
x
{\displaystyle x}
.
^ Savchev, Svetoslav; Andreescu, Titu (2003), "12 Hermite's Identity", Mathematical Miniatures , New Mathematical Library, vol. 43, Mathematical Association of America , pp. 41–44, ISBN 9780883856451 .
^ Matsuoka, Yoshio (1964), "Classroom Notes: On a Proof of Hermite's Identity", The American Mathematical Monthly , 71 (10): 1115, doi :10.2307/2311413 , JSTOR 2311413 , MR 1533020 .