Harrop formula
In intuitionistic logic, the Harrop formulae, named after Ronald Harrop, are the class of formulae inductively defined as follows:[1][2][3]
- Atomic formulae are Harrop, including falsity (⊥);
- is Harrop provided and are;
- is Harrop for any well-formed formula ;
- is Harrop provided is, and is any well-formed formula;
- is Harrop provided is.
By excluding disjunction and existential quantification (except in the antecedent of implication), non-constructive predicates are avoided, which has benefits for computer implementation.
Discussion
[edit]Harrop formulae are "well-behaved" also in a constructive context. For example, in Heyting arithmetic , Harrop formulae satisfy a classical equivalence not generally satisfied in constructive logic:[1]
There are however -statements that are -independent, meaning these are simple statements for which excluded middle is not -provable. Indeed, while intuitionistic logic proves for any , the disjunction will not be Harrop.
Hereditary Harrop formulae and logic programming
[edit]A more complex definition of hereditary Harrop formulae is used in logic programming as a generalisation of Horn clauses, and forms the basis for the language λProlog. Hereditary Harrop formulae are defined in terms of two (sometimes three) recursive sets of formulae. In one formulation:[4]
- Rigid atomic formulae, i.e. constants or formulae , are hereditary Harrop;
- is hereditary Harrop provided and are;
- is hereditary Harrop provided is;
- is hereditary Harrop provided is rigidly atomic, and is a G-formula.
G-formulae are defined as follows:[4]
- Atomic formulae are G-formulae, including truth(⊤);
- is a G-formula provided and are;
- is a G-formula provided and are;
- is a G-formula provided is;
- is a G-formula provided is;
- is a G-formula provided is, and is hereditary Harrop.
History
[edit]Harrop formulae were introduced around 1956 by Ronald Harrop and independently by Helena Rasiowa.[2] Variations of the fundamental concept are used in different branches of constructive mathematics and logic programming.
See also
[edit]References
[edit]- ^ a b Dummett, Michael (2000). Elements of Intuitionism (2nd ed.). Oxford University Press. p. 227. ISBN 0-19-850524-8.
- ^ a b A. S. Troelstra; H. Schwichtenberg (27 July 2000). Basic proof theory. Cambridge University Press. ISBN 0-521-77911-1.
- ^ Ronald Harrop (1956). "On disjunctions and existential statements in intuitionistic systems of logic". Mathematische Annalen. 132 (4): 347–361. doi:10.1007/BF01360048. S2CID 120620003.
- ^ a b Dov M. Gabbay, Christopher John Hogger, John Alan Robinson, Handbook of Logic in Artificial Intelligence and Logic Programming: Logic programming, Oxford University Press, 1998, p 575, ISBN 0-19-853792-1