HD 3443
Appearance
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Cetus |
Right ascension | 00h 37m 20.7196s[1] |
Declination | −24° 46′ 02.1843″[1] |
Apparent magnitude (V) | 5.57[2] |
Characteristics | |
HD 3443A | |
Evolutionary stage | main-sequence star |
Spectral type | G9V[3] |
Apparent magnitude (g) | 5.95[4] |
HD 3443B | |
Evolutionary stage | main-sequence star |
Spectral type | K0.5V[3] |
Astrometry | |
Radial velocity (Rv) | 18.63[5] km/s |
Proper motion (μ) | RA: 1450.34 mas/yr[1] Dec.: −19.38 mas/yr[1] |
Parallax (π) | 64.93 ± 1.85 mas[3] |
Distance | 50 ± 1 ly (15.4 ± 0.4 pc) |
Absolute magnitude (MV) | 5.31±0.08[2] |
Orbit[6] | |
Primary | HD 3443A |
Companion | HD 3443B |
Period (P) | 25.09 y |
Semi-major axis (a) | 0.4627[7]" (8.9 AU[8]) |
Eccentricity (e) | 0.235 |
Inclination (i) | 65.9[9]° |
Semi-amplitude (K1) (primary) | 18.4 km/s |
Details[9] | |
HD 3443A | |
Mass | 0.915±0.005[3] M☉ |
Radius | 0.92±0.05 R☉ |
Luminosity | 1.2[8] L☉ |
Temperature | 5449[8] K |
Metallicity [Fe/H] | −0.12[2] dex |
Rotation | 32.6±4.89 d |
Rotational velocity (v sin i) | 2.7±1.3 km/s |
Age | 9.36[2] Gyr |
HD 3443B | |
Mass | 0.864±0.005[3] M☉ |
Other designations | |
CD-25 225, CPD CPD-25 64, Gliese 25, HIP 2941, HR 159, 2MASS J00372057-2446023, WDS 00373–2446 | |
HD 3443A: Gaia EDR3 2347260998051944448, TYC 6421-1924-1 | |
HD 3443B: TYC 6421-1924-2 | |
Database references | |
SIMBAD | data |
HD 3443 is a binary system composed of medium-mass main sequence stars in the constellation of Cetus about 50 light years away.
System
[edit]This binary star system, with an orbital semimajor axis 8.9 AU, has not had any circumstellar dust detected as of 2020.[8] While the habitable zones of the stars stretch from 0.55 to 0.95 AU from the stars, planetary orbits with a semimajor axis beyond 1.87 AU would become unstable due to the influence of the binary companion.[10]
Properties
[edit]The star system is enriched in oxygen compared to the Solar System, having 140% of solar oxygen abundance,[11] but is depleted in heavier elements, having 75% of solar abundance of iron.[2]
References
[edit]- ^ a b c van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
- ^ a b c d e Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.; Franz, Otto; Van Altena, William F. (2009). "A Photometric Analysis of Seventeen Binary Stars Using Speckle Imaging". The Astronomical Journal. 138 (5): 1354–1364. Bibcode:2009AJ....138.1354D. doi:10.1088/0004-6256/138/5/1354.
- ^ a b c d e Andrade, Manuel (2019). "Colour-dependent accurate modelling of dynamical parallaxes and masses of visual binaries". Astronomy & Astrophysics. 630: A96. Bibcode:2019A&A...630A..96A. doi:10.1051/0004-6361/201936199.
- ^ Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
- ^ Pourbaix, D.; et al. (September 2004). "SB9: The ninth catalogue of spectroscopic binary orbits". Astronomy and Astrophysics. 424: 727–732. arXiv:astro-ph/0406573. Bibcode:2004A&A...424..727P. doi:10.1051/0004-6361:20041213. S2CID 119387088.
- ^ Pourbaix, D. (2000). "Resolved double-lined spectroscopic binaries: A neglected source of hypothesis-free parallaxes and stellar masses". Astronomy and Astrophysics Supplement Series. 145 (2): 215–222. Bibcode:2000A&AS..145..215P. doi:10.1051/aas:2000237.
- ^ Tokovinin, A.; Cantarutti, R.; Tighe, R.; Schurter, P.; Van Der Bliek, N.; Martinez, M.; Mondaca, E. (2010). "High-Resolution Imaging at the SOAR Telescope". Publications of the Astronomical Society of the Pacific. 122 (898): 1483–1494. arXiv:1010.4176. Bibcode:2010PASP..122.1483T. doi:10.1086/657903. S2CID 26826524.
- ^ a b c d Su, Kate Y L.; Kennedy, Grant M.; Yelverton, Ben (2020). "No significant correlation between radial velocity planet presence and debris disc properties". Monthly Notices of the Royal Astronomical Society. 495 (2): 1943–1957. arXiv:2005.03573. doi:10.1093/mnras/staa1316.
- ^ a b Justesen, A. B.; Albrecht, S. (2020). "The spin-orbit alignment of visual binaries". Astronomy & Astrophysics. 642: A212. arXiv:2008.12068. Bibcode:2020A&A...642A.212J. doi:10.1051/0004-6361/202039138. S2CID 221340982.
- ^ Jaime, Luisa G.; Aguilar, Luis; Pichardo, Barbara (2014). "Habitable zones with stable orbits for planets around binary systems". Monthly Notices of the Royal Astronomical Society. 443 (1): 260–274. arXiv:1401.1006. Bibcode:2014MNRAS.443..260J. doi:10.1093/mnras/stu1052.
- ^ Maldonado, J.; Villaver, E. (2016). "Evolved stars and the origin of abundance trends in planet hosts". Astronomy & Astrophysics. 588: A98. arXiv:1602.00835. Bibcode:2016A&A...588A..98M. doi:10.1051/0004-6361/201527883. S2CID 119212009.