Jump to content

Great stellated truncated dodecahedron

From Wikipedia, the free encyclopedia
Great stellated truncated dodecahedron
Type Uniform star polyhedron
Elements F = 32, E = 90
V = 60 (χ = 2)
Faces by sides 20{3}+12{10/3}
Coxeter diagram
Wythoff symbol 2 3 | 5/3
Symmetry group Ih, [5,3], *532
Index references U66, C83, W104
Dual polyhedron Great triakis icosahedron
Vertex figure
3.10/3.10/3
Bowers acronym Quit Gissid
3D model of a great stellated truncated dodecahedron

In geometry, the great stellated truncated dodecahedron (or quasitruncated great stellated dodecahedron or great stellatruncated dodecahedron) is a nonconvex uniform polyhedron, indexed as U66. It has 32 faces (20 triangles and 12 decagrams), 90 edges, and 60 vertices.[1] It is given a Schläfli symbol t0,1{5/3,3}.

[edit]

It shares its vertex arrangement with three other uniform polyhedra: the small icosicosidodecahedron, the small ditrigonal dodecicosidodecahedron, and the small dodecicosahedron:


Great stellated truncated dodecahedron

Small icosicosidodecahedron

Small ditrigonal dodecicosidodecahedron

Small dodecicosahedron

Cartesian coordinates

[edit]

Cartesian coordinates for the vertices of a great stellated truncated dodecahedron are all the even permutations of

where is the golden ratio.

See also

[edit]

References

[edit]
  1. ^ Maeder, Roman. "66: great stellated truncated dodecahedron". MathConsult.
[edit]