The degradation of L-threonine to glycine consists of a two-step biochemical pathway involving the enzymes L-threonine dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase. L-Threonine is first converted into 2-amino-3-ketobutyrate by L-threonine dehydrogenase. This gene encodes the second enzyme in this pathway, which then catalyzes the reaction between 2-amino-3-ketobutyrate and coenzyme A to form glycine and acetyl-CoA. The encoded enzyme is considered a class II pyridoxal-phosphate-dependent aminotransferase. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 14.
Jacquot C, Lanco X, Carbonnelle D, Sevestre O, Tomasoni C, Briad G, Juget M, Roussis V, Roussakis C (2002). "Effect of four genes (ALDH1, NRF1, JAM and KBL) on proliferation arrest in a non-small cell bronchopulmonary cancer line". Anticancer Research. 22 (4): 2229–35. PMID12174908.
Edgar AJ, Polak JM (Mar 2000). "Molecular cloning of the human and murine 2-amino-3-ketobutyrate coenzyme A ligase cDNAs". European Journal of Biochemistry. 267 (6): 1805–12. doi:10.1046/j.1432-1327.2000.01175.x. PMID10712613.