Jump to content

Frederick Rowbottom

From Wikipedia, the free encyclopedia

Frederick Rowbottom (16 January 1938 – 12 October 2009) was a British logician and mathematician. The large cardinal notion of Rowbottom cardinals is named after him.

Biography

[edit]

Rowbottom was educated at Glossop Grammar School (now Glossopdale School) in High Peak, Derbyshire, and King's College, Cambridge, where he graduated with a degree in mathematics in 1960.[1] Upon leaving Cambridge, he studied under Howard Jerome Keisler at the University of Wisconsin–Madison, earning his Ph.D. degree in 1964, with a thesis entitled Large Cardinals and Small Constructible Sets, under the supervision of Jerome Keisler.[2] With a recommendation from Georg Kreisel, he took a position at the University of Bristol in 1965, where he spent the rest of his professional career.

He published a paper called "Some strong axioms of infinity incompatible with the axiom of constructibility" in the Annals of Mathematical Logic, 3 1971. This paper, together with his thesis, "showed that Ramsey cardinals were weaker than measurable cardinals, and that their existence implied the constructible real continuum was countable; he further proved that this followed also from weaker partition and two cardinal properties."[3] The large cardinal notion of Rowbottom cardinals is named after him,[4] as is the notion of a Rowbottom ultrafilter.[5]

Keith Devlin studied set theory under Rowbottom. In 1992 he and a student, Jonathan Chapman, wrote a textbook on topos theory, Relative Category Theory and Geometric Morphisms: A Logical Approach, published in Oxford Logic Guides, No. 16.[6][7][8] Rowbottom retired in 1993 at the age of 55.

Rowbottom died of heart failure in Hadfield, Derbyshire, England, on 12 October 2009, aged 71.[3]

References

[edit]
  1. ^ "Tripos Results At Cambridge", The Times, 17 June 1960, p. 25.
  2. ^ Frederick Rowbottom at the Mathematics Genealogy Project.
  3. ^ a b "In Memoriam: Frederick Rowbottom", Notices, Bulletin of Symbolic Logic, 16 (2): 299, 2010, doi:10.2178/bsl/1286889129, S2CID 231796765.
  4. ^ Tryba, Jan (1981), "A few remarks on Rowbottom cardinals", Israel Journal of Mathematics, 40 (3–4): 193–196, doi:10.1007/BF02761361, S2CID 120998636.
  5. ^ Feng, Qi (1987), "On the Rowbottom M-ultrafilters", Journal of Symbolic Logic, 52 (4): 990–993, doi:10.2307/2273832, JSTOR 2273832.
  6. ^ Rowbottom, Frederick and Jonathan Chapman. Relative Category Theory and Geometric Morphisms: A Logical Approach, published in Oxford Logic Guides, Oxford University Press, 1992, ISBN 978-0-19-853434-1
  7. ^ McLarty, Colin (1994). "Review". Modern Logic. 4 (3): 345–348.
  8. ^ Moerdijk, Ieke (1995). "Review". Journal of Symbolic Logic. 60 (2): 694–695. doi:10.2307/2275864. JSTOR 2275864.