Jump to content

Fractional calculus of sets

From Wikipedia, the free encyclopedia

The Fractional calculus of sets, first introduced in the article titled "Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods",[1] is a methodology derived from fractional calculus.[2] The primary concept behind fractional calculus of sets is the characterization of fractional calculus elements using sets due to the plethora of fractional operators available.[3][4][5] This methodology originated from the development of the Fractional Newton-Raphson method[6] and subsequent related works.[7][8][9][10]

Set of fractional operators 1

[edit]

Fractional calculus, a branch of mathematics dealing with derivatives of non-integer order, emerged nearly simultaneously with traditional calculus. This emergence was partly due to Leibniz's notation for derivatives of integer order: . Thanks to this notation, L'Hopital was able to inquire in a letter to Leibniz about the interpretation of taking in a derivative. At that moment, Leibniz couldn't provide a physical or geometric interpretation for this question, so he simply replied to L'Hopital in a letter that "... is an apparent paradox from which, one day, useful consequences will be drawn".

The name "fractional calculus" originates from a historical question, as this branch of mathematical analysis studies derivatives and integrals of a certain order . Currently, fractional calculus lacks a unified definition of what constitutes a fractional derivative. Consequently, when the explicit form of a fractional derivative is unnecessary, it is typically denoted as follows:

Fractional operators have various representations, but one of their fundamental properties is that they recover the results of traditional calculus as . Considering a scalar function and the canonical basis of denoted by , the following fractional operator of order is defined using Einstein notation[11]

Denoting as the partial derivative of order with respect to the -th component of the vector , the following set of fractional operators is defined:

with its complement:

Consequently, the following set is defined:

Extension to vectorial functions

[edit]

For a function , the set is defined as:

where denotes the -th component of the function .

Set of fractional operators 2

[edit]

The set of fractional operators considering infinite orders is defined as:

where under the classic Hadamard product,[12] it holds that:

Fractional matrix operators

[edit]

For each operator , the fractional matrix operator is defined as:

and for each operator , the following matrix, corresponding to a generalization of the Jacobian matrix,[13] can be defined:

where .

Modified Hadamard product

[edit]

Considering that, in general, , the following modified Hadamard product is defined:

with which the following theorem is obtained:

Theorem: Abelian group of fractional matrix operators

[edit]

Let be a fractional operator such that . Considering the modified Hadamard product, the following set of fractional matrix operators is defined:

which corresponds to the Abelian group[14] generated by the operator .

Proof

[edit]

Since the set in equation (1) is defined by applying only the vertical type Hadamard product between its elements, for all it holds that:

with which it is possible to prove that the set (1) satisfies the following properties of an Abelian group:

Set of fractional operators 3

[edit]

Let be the set . If and , then the following multi-index notation can be defined:

Then, considering a function and the fractional operator:

the following set of fractional operators is defined:

From which the following results are obtained:

As a consequence, considering a function , the following set of fractional operators is defined:

Set of fractional operators 4

[edit]

Considering a function and the following set of fractional operators:

Then, taking a ball , it is possible to define the following set of fractional operators:

which allows generalizing the expansion in Taylor series of a vector-valued function in multi-index notation. As a consequence, the following result can be obtained:

Fractional Newton-Raphson method

[edit]

Let be a function with a point such that . Then, for some and a fractional operator , it is possible to define a type of linear approximation of the function around as follows:

which can be expressed more compactly as:

where denotes a square matrix. On the other hand, as and given that , the following is inferred:

As a consequence, defining the matrix:

the following fractional iterative method can be defined:

which corresponds to the most general case of the fractional Newton-Raphson method.

The use of fractional operators in fixed-point methods has been extensively studied and cited in various academic sources. Examples of this can be found in several articles published in reputable journals, such as those featured in ScienceDirect,[15][16] Springer,[17] World Scientific,[18] and MDPI.[19][20][21][22][23][24][25][26] Studies are also included from Taylor & Francis,[27] Cubo,[28] Revista Mexicana de Ciencias Agrícolas,[29] Journal of Research and Creativity,[30] MQR,[31] and Актуальные вопросы науки и техники.[32] These works highlight the relevance and applicability of fractional operators in solving problems.

References

[edit]
  1. ^ Torres-Hernandez, A.; Brambila-Paz, F. (December 29, 2021). "Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods". Fractal and Fractional. 5 (4): 240. doi:10.3390/fractalfract5040240.
  2. ^ Hilfer, Rudolf (2 March 2000). Applications of fractional calculus in physics. World Scientific. ISBN 978-981-4496-20-9.
  3. ^ de Oliveira, Edmundo Capelas; Tenreiro Machado, José António (June 10, 2014). "A Review of Definitions for Fractional Derivatives and Integral". Mathematical Problems in Engineering. 2014: e238459. doi:10.1155/2014/238459.
  4. ^ Sales Teodoro, G.; Tenreiro Machado, J.A.; Capelas de Oliveira, E. (July 29, 2019). "A review of definitions of fractional derivatives and other operators". Journal of Computational Physics. 388: 195–208. Bibcode:2019JCoPh.388..195S. doi:10.1016/j.jcp.2019.03.008.
  5. ^ Valério, Duarte; Ortigueira, Manuel D.; Lopes, António M. (January 29, 2022). "How Many Fractional Derivatives Are There?". Mathematics. 10 (5): 737. doi:10.3390/math10050737.
  6. ^ Torres-Hernandez, A.; Brambila-Paz, F. (2021). "Fractional Newton-Raphson Method". Applied Mathematics and Sciences. 8: 1–13. doi:10.5121/mathsj.2021.8101.
  7. ^ Torres-Hernandez, A.; Brambila-Paz, F.; Montufar-Chaveznava, R. (September 29, 2022). "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers". Applied Mathematics and Computation. 429: 127231. arXiv:2109.03152. doi:10.1016/j.amc.2022.127231. hdl:10230/60337.
  8. ^ Torres-Hernandez, A. (2022). "Code of a multidimensional fractional quasi-Newton method with an order of convergence at least quadratic using recursive programming". Applied Mathematics and Sciences. 9: 17–24. doi:10.5121/mathsj.2022.9103.
  9. ^ Torres-Hernandez, A.; Brambila-Paz, F.; Ramirez-Melendez, R. (2022). "Sets of Fractional Operators and Some of Their Applications". Operator Theory - Recent Advances, New Perspectives and Applications.
  10. ^ Torres-Hernandez, Anthony; Brambila-Paz, Fernando; Ramirez-Melendez, Rafael (January 2024). "Proposal for Use of the Fractional Derivative of Radial Functions in Interpolation Problems". Fractal and Fractional. 8 (1): 16. doi:10.3390/fractalfract8010016. ISSN 2504-3110.
  11. ^ Einstein summation for multidimensional arrays
  12. ^ Horn, Roger A.; Johnson, Charles R. (2013). The Hadamard Product. Cambridge University Press. p. 87. ISBN 978-0-8218-0154-3.
  13. ^ Turner, A. M.; Weir, A. D. (April 1965). "Jacobians of matrix transformation and functions of matrix arguments". Mathematische Annalen. 159 (1): 76–84. doi:10.1007/BF01360282.
  14. ^ Arnold, David (2015). Abelian Groups. Springer Monographs in Mathematics. Springer. doi:10.1007/978-3-319-19422-6. ISBN 978-3-319-19422-6.
  15. ^ Shams, M.; Kausar, N.; Agarwal, P.; Jain, S. (2024). "Fuzzy fractional Caputo-type numerical scheme for solving fuzzy nonlinear equations". Fractional Differential Equations. pp. 167–175. doi:10.1016/B978-0-44-315423-2.00016-3. ISBN 978-0-443-15423-2.
  16. ^ Shams, M.; Kausar, N.; Agarwal, P.; Edalatpanah, S.A. (2024). "Fractional Caputo-type simultaneous scheme for finding all polynomial roots". Recent Trends in Fractional Calculus and Its Applications. pp. 261–272. doi:10.1016/B978-0-44-318505-2.00021-0. ISBN 978-0-443-18505-2.
  17. ^ Al-Nadhari, A.M.; Abderrahmani, S.; Hamadi, D.; Legouirah, M. (2024). "The efficient geometrical nonlinear analysis method for civil engineering structures". Asian Journal of Civil Engineering. 25 (4): 3565–3573. doi:10.1007/s42107-024-00996-z.
  18. ^ Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S.F.; Momani, S. (2023). "On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications". Fractals. 31 (4): 2340075–2340085. Bibcode:2023Fract..3140075S. doi:10.1142/S0218348X23400753.
  19. ^ Wang, X.; Jin, Y.; Zhao, Y. (2021). "Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems". Symmetry. 13 (6): 943. Bibcode:2021Symm...13..943W. doi:10.3390/sym13060943.
  20. ^ Tverdyi, D.; Parovik, R. (2021). "Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation". Fractal and Fractional. 6 (1): 23. doi:10.3390/fractalfract6010023.
  21. ^ Tverdyi, D.; Parovik, R. (2022). "Application of the fractional Riccati equation for mathematical modeling of dynamic processes with saturation and memory effect". Fractal and Fractional. 6 (3): 163. doi:10.3390/fractalfract6030163.
  22. ^ Srivastava, H.M. (2023). "Editorial for the Special Issue "Operators of Fractional Calculus and Their Multidisciplinary Applications"". Fractal and Fractional. 7 (5): 415. doi:10.3390/fractalfract7050415.
  23. ^ Shams, M.; Carpentieri, B. (2023). "Efficient inverse fractional neural network-based simultaneous schemes for nonlinear engineering applications". Fractal and Fractional. 7 (12): 849. doi:10.3390/fractalfract7120849.
  24. ^ Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. (2023). "Solving Nonlinear Transcendental Equations by Iterative Methods with Conformable Derivatives: A General Approach". Mathematics. 11 (11): 2568. doi:10.3390/math11112568.
  25. ^ Shams, M.; Carpentieri, B. (2023). "On highly efficient fractional numerical method for solving nonlinear engineering models". Mathematics. 11 (24): 4914. doi:10.3390/math11244914.
  26. ^ Martínez, F.; Kaabar, M.K.A.; Martínez, I. (2024). "Novel Results on Legendre Polynomials in the Sense of a Generalized Fractional Derivative". Mathematical and Computational Applications. 29 (4): 54. doi:10.3390/mca29040054.
  27. ^ Shams, M.; Kausar, N.; Agarwal, P.; Jain, S.; Salman, M.A.; Shah, M.A. (2023). "On family of the Caputo-type fractional numerical scheme for solving polynomial equations". Applied Mathematics in Science and Engineering. 31 (1): 2181959. doi:10.1080/27690911.2023.2181959.
  28. ^ Nayak, S.K.; Parida, P.K. (2024). "Global convergence analysis of Caputo fractional Whittaker method with real world applications". Cubo (Temuco). 26 (1): 167–190. doi:10.56754/0719-0646.2601.167.
  29. ^ Rebollar-Rebollar, S.; Martínez-Damián, M.Á.; Hernández-Martínez, J.; Hernández-Aguirre, P. (2021). "Óptimo económico en una función Cobb-Douglas bivariada: una aplicación a ganadería de carne semi extensiva". Revista mexicana de ciencias agrícolas. 12 (8): 1517–1523. doi:10.29312/remexca.v12i8.2915.
  30. ^ Mogro, M.F.; Jácome, F.A.; Cruz, G.M.; Zurita, J.R. (2024). "Sorting Line Assisted by A Robotic Manipulator and Artificial Vision with Active Safety". Journal of Robotics and Control. 5 (2): 388–396. doi:10.18196/jrc.v5i2.20327 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  31. ^ Luna-Fox, S.B.; Uvidia-Armijo, J.H.; Uvidia-Armijo, L.A.; Romero-Medina, W.Y. (2024). "Exploración comparativa de los métodos numéricos de Newton-Raphson y bisección para la resolución de ecuaciones no lineales". MQRInvestigar. 8 (2): 642–655. doi:10.56048/MQR20225.8.2.2024.642-655.
  32. ^ Tvyordyj, D.A.; Parovik, R.I. (2022). "Mathematical modeling in MATLAB of solar activity cycles according to the growth-decline of the Wolf number". Vestnik KRAUNC. Fiziko-Matematicheskie Nauki. 41 (4): 47–64. doi:10.26117/2079-6641-2022-41-4-47-65 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)