Jump to content

Finsler's lemma

From Wikipedia, the free encyclopedia

Finsler's lemma is a mathematical result named after Paul Finsler. It states equivalent ways to express the positive definiteness of a quadratic form Q constrained by a linear form L. Since it is equivalent to another lemmas used in optimization and control theory, such as Yakubovich's S-lemma,[1] Finsler's lemma has been given many proofs and has been widely used, particularly in results related to robust optimization and linear matrix inequalities.

Statement of Finsler's lemma

[edit]

Let xRn, and QRn x n and LRn x n be symmetric matrices. The following statements are equivalent:[2]

Variants

[edit]

Non-Strict Finsler Lemma

[edit]

When the matrix L is indefinite, replacing strict inequalities with non-strict ones still maintains the equivalence between the statements of Finsler's lemma. However, if L is not indefinite, additional assumptions are necessary to ensure equivalence between the statements.[3]

Extra equivalences when L is positive semi-definite

[edit]

In the particular case that L is positive semi-definite, it is possible to decompose it as L = BTB. The following statements, which are also referred as Finsler's lemma in the literature, are equivalent:[4]

Matrix Finsler's lemma

[edit]

There is also a variant of Finsler's lemma for quadratic matrix inequalities, known as matrix Finsler's lemma, which states that the following statements are equivalent for symmetric matrices Q and L belonging to R(l+k)x(l+k):[5][6]

under the assumption that

and

satisfy the following assumptions:

  1. Q12 = 0 and Q22 < 0,
  2. L22 < 0, and L11 - L12L22+L12 = 0, and
  3. there exists a matrix G such that Q11 + GTQ22G > 0 and L22G = L12T.

Generalizations

[edit]

Projection lemma

[edit]

The equivalence between the following statements is also common on the literature of linear matrix inequalities, and is known as the Projection Lemma (or also as Elimination Lemma):[7]

This lemma generalizes one of the Finsler's lemma variants by including an extra matrix C and an extra constraint involving this extra matrix.

It is interesting to note that if the strict inequalities are changed to non-strict inequalities, the equivalence does not hold anymore: only the second statement imply the first statement. Nevertheless, it still possible to obtain the equivalence between the statements under extra assumptions.[8]

Robust version

[edit]

Finsler's lemma also generalizes for matrices Q and B depending on a parameter s within a set S. In this case, it is natural to ask if the same variable μ (respectively X) can satisfy for all (respectively, ). If Q and B depends continuously on the parameter s, and S is compact, then this is true. If S is not compact, but Q and B are still continuous matrix-valued functions, then μ and X can be guaranteed to be at least continuous functions.[9]

Applications

[edit]

Data-driven control

[edit]

The matrix variant of Finsler lemma has been applied to the data-driven control of Lur'e systems[5] and in a data-driven robust linear matrix inequality-based model predictive control scheme.[10]

S-Variable approach to robust control of linear dynamical systems

[edit]

Finsler's lemma can be used to give novel linear matrix inequality (LMI) characterizations to stability and control problems.[4] The set of LMIs stemmed from this procedure yields less conservative results when applied to control problems where the system matrices has dependence on a parameter, such as robust control problems and control of linear-parameter varying systems.[11] This approach has recently been called as S-variable approach[12][13] and the LMIs stemming from this approach are known as SV-LMIs (also known as dilated LMIs[14]).

Sufficient condition for universal stabilizability of non-linear systems

[edit]

A nonlinear system has the universal stabilizability property if every forward-complete solution of a system can be globally stabilized. By the use of Finsler's lemma, it is possible to derive a sufficient condition for universal stabilizability in terms of a differential linear matrix inequality.[15]

See also

[edit]

References

[edit]
  1. ^ Zi-Zong, Yan; Jin-Hai, Guo (2010). "Some Equivalent Results with Yakubovich's S-Lemma". SIAM Journal on Control and Optimization. 48 (7): 4474–4480. doi:10.1137/080744219.
  2. ^ Finsler, Paul (1936). "Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen". Commentarii Mathematici Helvetici. 9 (1): 188–192. doi:10.1007/BF01258188. S2CID 121751764.
  3. ^ Meijer, Tomas; Scheres, Koen; Eijnden, Sebastiaan van den; Holicki, Tobias; Scherer, Carsten; Heemels, Maurice (2024). "A Unified Non-Strict Finsler Lemma". IEEE Control Systems Letters. 8 (8): 1955–1960. arXiv:2403.10306. doi:10.1109/LCSYS.2024.3415473. ISSN 2475-1456.
  4. ^ a b de Oliveira, Maurício C.; Skelton, Robert E. (2001). "Stability tests for constrained linear systems". In Moheimani, S. O. Reza (ed.). Perspectives in robust control. London: Springer-Verlag. pp. 241–257. ISBN 978-1-84628-576-9.
  5. ^ a b van Waarde, Henk J.; Kanat Camlibel, M. (2021-12-14). "A Matrix Finsler's Lemma with Applications to Data-Driven Control". 2021 60th IEEE Conference on Decision and Control (CDC) (PDF). Austin, TX, USA: IEEE. pp. 5777–5782. doi:10.1109/CDC45484.2021.9683285. ISBN 978-1-6654-3659-5. S2CID 246479914.
  6. ^ van Waarde, Henk J.; Camlibel, M. Kanat; Eising, Jaap; Trentelman, Harry L. (2023-08-31). "Quadratic Matrix Inequalities with Applications to Data-Based Control". SIAM Journal on Control and Optimization. 61 (4): 2251–2281. arXiv:2203.12959. doi:10.1137/22M1486807. ISSN 0363-0129. S2CID 247627787.
  7. ^ Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. (1994-01-01). Linear Matrix Inequalities in System and Control Theory. Studies in Applied and Numerical Mathematics. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611970777. ISBN 9780898714852. S2CID 27307648.
  8. ^ Meijer, T. J.; Holicki, T.; Eijnden, S. J. A. M. van den; Scherer, C. W.; Heemels, W. P. M. H. (2024). "The Non-Strict Projection Lemma". IEEE Transactions on Automatic Control. 69 (8): 5584–5590. arXiv:2305.08735. doi:10.1109/TAC.2024.3371374. ISSN 0018-9286.
  9. ^ Ishihara, J. Y.; Kussaba, H. T. M.; Borges, R. A. (August 2017). "Existence of Continuous or Constant Finsler's Variables for Parameter-Dependent Systems". IEEE Transactions on Automatic Control. 62 (8): 4187–4193. arXiv:1711.04570. doi:10.1109/tac.2017.2682221. ISSN 0018-9286. S2CID 20563439.
  10. ^ Nguyen, Hoang Hai; Friedel, Maurice; Findeisen, Rolf (2023-03-08). "LMI-based Data-Driven Robust Model Predictive Control". arXiv:2303.04777 [eess.SY].
  11. ^ Oliveira, R. C. L. F.; Peres, P. L. D. (July 2007). "Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations". IEEE Transactions on Automatic Control. 52 (7): 1334–1340. doi:10.1109/tac.2007.900848. ISSN 0018-9286. S2CID 23352506.
  12. ^ Ebihara, Yoshio; Peaucelle, Dimitri; Arzelier, Denis (2015). S-Variable Approach to LMI-Based Robust Control | SpringerLink. Communications and Control Engineering. doi:10.1007/978-1-4471-6606-1. ISBN 978-1-4471-6605-4.
  13. ^ Hosoe, Y.; Peaucelle, D. (June 2016). "S-variable approach to robust stabilization state feedback synthesis for systems characterized by random polytopes". 2016 European Control Conference (ECC). pp. 2023–2028. doi:10.1109/ecc.2016.7810589. ISBN 978-1-5090-2591-6. S2CID 34083031.
  14. ^ Ebihara, Y.; Hagiwara, T. (August 2002). "A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems". Proceedings of the 41st SICE Annual Conference. SICE 2002. Vol. 4. pp. 2585–2590 vol.4. doi:10.1109/sice.2002.1195827. ISBN 978-0-7803-7631-1. S2CID 125985256.
  15. ^ Manchester, I. R.; Slotine, J. J. E. (June 2017). "Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design". IEEE Transactions on Automatic Control. 62 (6): 3046–3053. arXiv:1503.03144. doi:10.1109/tac.2017.2668380. ISSN 0018-9286. S2CID 5100489.