Erdős conjecture on arithmetic progressions
Erdős' conjecture on arithmetic progressions, often referred to as the Erdős–Turán conjecture, is a conjecture in arithmetic combinatorics (not to be confused with the Erdős–Turán conjecture on additive bases). It states that if the sum of the reciprocals of the members of a set A of positive integers diverges, then A contains arbitrarily long arithmetic progressions.
Formally, the conjecture states that if A is a large set in the sense that
then A contains arithmetic progressions of any given length, meaning that for every positive integer k there are an integer a and a non-zero integer c such that .
History
In 1936, Erdős and Turán made the weaker conjecture that any set of integers with positive natural density contains infinitely many 3 term arithmetic progressions.[1] This was proven by Klaus Roth in 1952, and generalized to arbitrarily long arithmetic progressions by Szemerédi in 1975 in what is now known as Szemerédi's theorem.
In a 1976 talk titled "To the memory of my lifelong friend and collaborator Paul Turán," Paul Erdős offered a prize of US$3000 for a proof of this conjecture.[2] As of 2008 the problem is worth US$5000.[3]
Progress and related results
Erdős' conjecture on arithmetic progressions can be viewed as a stronger version of Szemerédi's theorem. Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture.
The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem. A 2016 paper by Bloom[4] proved that if contains no non-trivial three-term arithmetic progressions then .
In 2020 a preprint by Bloom and Sisask[5] improved the bound to for some absolute constant .
In 2023 a new bound of [6][7][8] was found by computer scientists Kelley and Meka, with an exposition given in more familiar mathematical language by Bloom and Sisask,[9][10] who have since improved the exponent of the Kelly-Meka bound to , and conjectured , in a preprint.[11]
See also
- Problems involving arithmetic progressions
- List of sums of reciprocals
- List of conjectures by Paul Erdős
- Müntz–Szász theorem
References
- ^ Erdős, Paul; Turán, Paul (1936), "On some sequences of integers" (PDF), Journal of the London Mathematical Society, 11 (4): 261–264, doi:10.1112/jlms/s1-11.4.261.
- ^ Problems in number theory and Combinatorics, in Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976), Congress. Numer. XVIII, 35–58, Utilitas Math., Winnipeg, Man., 1977
- ^ p. 354, Soifer, Alexander (2008); The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators; New York: Springer. ISBN 978-0-387-74640-1
- ^ Bloom, Thomas F. (2016). "A quantitative improvement for Roth's theorem on arithmetic progressions". Journal of the London Mathematical Society. Second Series. 93 (3): 643–663. arXiv:1405.5800. doi:10.1112/jlms/jdw010. MR 3509957. S2CID 27536138.
- ^ Bloom, Thomas F.; Sisask, Olof (2020). "Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions". arXiv:2007.03528 [math.NT].
- ^ Kelley, Zander; Meka, Raghu (2023-11-06). "Strong Bounds for 3-Progressions". 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). IEEE. pp. 933–973. arXiv:2302.05537. doi:10.1109/FOCS57990.2023.00059. ISBN 979-8-3503-1894-4.
- ^ Kelley, Zander; Meka, Raghu (2023-02-10). "Strong Bounds for 3-Progressions". arXiv:2302.05537 [math.NT].
- ^ Sloman, Leila (2023-03-21). "Surprise Computer Science Proof Stuns Mathematicians". Quanta Magazine.
- ^ Bloom, Thomas F.; Sisask, Olof (2023-12-31). "The Kelley–Meka bounds for sets free of three-term arithmetic progressions". Essential Number Theory. 2 (1): 15–44. arXiv:2302.07211. doi:10.2140/ent.2023.2.15. ISSN 2834-4634.
- ^ Bloom, Thomas F.; Sisask, Olof (2023-02-14). "The Kelley–Meka bounds for sets free of three-term arithmetic progressions". Essential Number Theory. 2: 15–44. arXiv:2302.07211. doi:10.2140/ent.2023.2.15.
- ^ Bloom, Thomas F.; Sisask, Olof (2023-09-05). "An improvement to the Kelley-Meka bounds on three-term arithmetic progressions". arXiv:2309.02353 [math.NT].
- P. Erdős: Résultats et problèmes en théorie de nombres, Séminaire Delange-Pisot-Poitou (14e année: 1972/1973), Théorie des nombres, Fasc 2., Exp. No. 24, pp. 7,
- P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.
- P. Erdős: Problems in number theory and combinatorics, Proc. Sixth Manitoba Conf. on Num. Math., Congress Numer. XVIII(1977), 35–58.
- P. Erdős: On the combinatorial problems which I would most like to see solved, Combinatorica, 1(1981), 28. doi:10.1007/BF02579174
External links
- The Erdős–Turán conjecture or the Erdős conjecture? on MathOverflow