The scale factors for the elliptic cylindrical coordinates and are equal
whereas the remaining scale factor .
Consequently, an infinitesimal volume element equals
and the Laplacian equals
Other differential operators such as and can be expressed in the coordinates by substituting
the scale factors into the general formulae found in orthogonal coordinates.
An alternative and geometrically intuitive set of elliptic coordinates are sometimes used, where and . Hence, the curves of constant are ellipses, whereas the curves of constant are hyperbolae. The coordinate must belong to the interval [-1, 1], whereas the
coordinate must be greater than or equal to one.
The coordinates have a simple relation to the distances to the foci and . For any point in the (x,y) plane, the sum of its distances to the foci equals , whereas their difference equals .
Thus, the distance to is , whereas the distance to is . (Recall that and are located at and , respectively.)
A drawback of these coordinates is that they do not have a 1-to-1 transformation to the Cartesian coordinates
The scale factors for the alternative elliptic coordinates are
and, of course, . Hence, the infinitesimal volume element becomes
and the Laplacian equals
Other differential operators such as
and can be expressed in the coordinates by substituting
the scale factors into the general formulae
found in orthogonal coordinates.
The three-dimensional wave equation, when expressed in elliptic cylindrical coordinates, may be solved by separation of variables, leading to the Mathieu differential equations.
The geometric properties of elliptic coordinates can also be useful. A typical example might involve
an integration over all pairs of vectors and
that sum to a fixed vector , where the integrand
was a function of the vector lengths and . (In such a case, one would position between the two foci and aligned with the -axis, i.e., .) For concreteness, , and could represent the momenta of a particle and its decomposition products, respectively, and the integrand might involve the kinetic energies of the products (which are proportional to the squared lengths of the momenta).
Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 179. LCCN59014456. ASIN B0000CKZX7.
Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 97. LCCN67025285.
Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN0-86720-293-9. Same as Morse & Feshbach (1953), substituting uk for ξk.
Moon P, Spencer DE (1988). "Elliptic-Cylinder Coordinates (η, ψ, z)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 17–20 (Table 1.03). ISBN978-0-387-18430-2.