Exocyst complex component 7 is a protein that in humans is encoded by the EXOC7gene.[5][6] It was formerly known as Exo70.
It forms one subunit of the exocystcomplex. First discovered in Saccharomyces cerevisiae, this and other exocyst proteins have been observed in several other eukaryotes, including humans.[7] In S. cerevisiae, the exocyst complex is involved in the late stages of exocytosis, and is localised at the tip of the bud, the major site of exocytosis in yeast.[7] It interacts with the Rho3 GTPase.[8] This interaction mediates one of the three known functions of Rho3 in cell polarity: vesicle docking and fusion with the plasma membrane (the other two functions are regulation of actin polarity and transport of exocytic vesicles from the mother cell to the bud).[9] In humans, the functions of this protein and the exocyst complex are less well characterised: this protein is expressed in several tissues and is thought to also be involved in exocytosis.[10]
Ignatovich O, Tomlinson IM, Popov AV, Brüggemann M, Winter G (2000). "Dominance of intrinsic genetic factors in shaping the human immunoglobulin Vlambda repertoire". J. Mol. Biol. 294 (2): 457–465. doi:10.1006/jmbi.1999.3243. PMID10610771.
Holtmeier W, Hennemann A, Caspary WF (2000). "IgA and IgM V(H) repertoires in human colon: evidence for clonally expanded B cells that are widely disseminated". Gastroenterology. 119 (5): 1253–1266. doi:10.1053/gast.2000.20219. PMID11054383.
Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–1178. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID16189514. S2CID4427026.
Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP (2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nat. Biotechnol. 24 (10): 1285–1292. doi:10.1038/nbt1240. PMID16964243. S2CID14294292.