This is a draft Articles for creation (AfC) submission. It is not currently pending review. While there are no deadlines, abandoned drafts may be deleted after six months. To edit the draft click on the "Edit" tab at the top of the window.
If you need help editing or submitting your draft, please ask us a question at the AfC Help Desk or get live help from experienced editors. These venues are only for help with editing and the submission process, not to get reviews.
If you need feedback on your draft, or if the review is taking a lot of time, you can try asking for help on the talk page of a relevant WikiProject. Some WikiProjects are more active than others so a speedy reply is not guaranteed.
To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags.
An Abelian surface is a two-dimensional Abelian variety. This is, they are projective varieties that also have the structure of a group, in a way that is compatible with the group composition and taking inverses. Elliptic curves represent one-dimensional Abelian varieties. As an example of an Abelian surface defined over a finite field, consider the Jacobian variety of the genus 2 curve
[1]
which was introduced in the section on hyperelliptic curves. The dimension of equals the genus of , so . There are algebraic integers such that[2]
the polynomial has coefficients in ;
for all ; and
for .
The zeta-function of is given by
where , , and represents the complex variable of the zeta-function. The Weil polynomials have the following specific form (Kahn 2020):
for , and
is the same for the curve (see section above) and its Jacobian variety .
This is, the inverse roots of are the products that consist of many, different inverse roots of . Hence, all coefficients of the polynomials can be expressed as polynomial functions of the parameters , and appearing in Calculating these polynomial functions for the coefficients of the shows that
Polynomial allows for calculating the numbers of elements of the Jacobian variety over the finite field and its field extension :[3][4]
The inverses of the zeros of do have the expected absolute value of (Riemann hypothesis). Moreover, the maps correlate the inverses of the zeros of and the inverses of the zeros of . A non-singular, complex, projective, algebraic variety with good reduction at the prime 41 to must necessarily have Betti numbers , since these are the degrees of the polynomials
The Euler characteristic of is given by the alternating sum of these degrees/Betti numbers: .
By taking the logarithm of
it follows that
Aside from the values and already known, you can read off from this Taylor series all other numbers , , of -rational elements of the Jacobian variety, defined over , of the curve :
for instance, and . In doing so, always implies since then, is a subgroup of .