Jump to content

Draft:Peter Semrl

From Wikipedia, the free encyclopedia

Peter Šemrl
AwardsNational award for scientific achievements, Slovenia, 1996, Taussky-Todd Prize, 2004, Béla Szokefalvy-Nagy Medal, 2018,G. de B. Robinson Award, 2024
Academic work
EraLinear algebra, functional analysis, operator theory, mathematical physics.
InstitutionsLjubljana, Slovenia
Websitehttps://users.fmf.uni-lj.si/semrl/

Peter Šemrl is a Slovenian mathematician professor in Institute of Mathematics, Physics and Mechanics[1] at the University of Ljubljana. He is renowned for his contributions to functional analysis, operator theory, and mathematical optimization.

Research Interests

[edit]
  • Linear algebra
  • Functional analysis
  • Operator theory
  • Mathematical Physics
  • Applied linear algebra
  • General preservers
  • Geometry of matrices
  • Fundamental theorem of chronogeometry
  • Isometries
  • Local automorphisms


International awards and appointments

[edit]


Selected Publications

[edit]
  • Semrl, Peter (1993). "Ring derivations on standard operator algebras". Journal of Functional Analysis. 112 (2): 318–324. doi:10.1016/0022-1236(87)31035-9 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  • Brešar, Matej; Šemrl, Peter (1993). "Mappings which preserve idempotents, local automorphisms, and local derivations". Canadian Journal of Mathematics. 45 (3): 483–496. doi:10.4153/CJM-1993-025-4.
  • Omladič, Matjaž; Šemrl, Peter (1995). "On non linear perturbations of isometries". Mathematische Annalen. 303 (1): 617–628. doi:10.1007/BF01461008.
  • Brešar, Matej; Šemrl, Peter (1996). "Derivations mapping into the socle". Mathematical Proceedings of the Cambridge Philosophical Society. 120 (2). Cambridge University Press: 339–346. doi:10.1017/S0305004100074892.
  • Šemrl, Peter (1996). "Linear mappings that preserve operators annihilated by a polynomial". Journal of Operator Theory: 45–58. doi:10.1016/S0022-247X(02)00105-1.
  • Brešar, Matej; Šemrl, Peter (1996). "Linear maps preserving the spectral radius". Journal of Functional Analysis. 142 (2): 360–368. doi:10.1006/jfan.1996.0153.
  • Meshulam, Roy; Šemrl, Peter (2002). "Locally linearly dependent operators". Pacific Journal of Mathematics. 203 (2): 441–459. doi:10.2140/PJM.2002.203.441.
  • Šemrl, Peter (2003). "Generalized Symmetry Transformations on Quaternionic Indefinite Inner Product Spaces: An Extension of Quaternionic Version of Wigner's Theorem". Communications in Mathematical Physics. 242 (3): 579–584. doi:10.1007/s00220-003-0957-7.
  • Šemrl, Peter (2004). "Applying projective geometry to transformations on rank one idempotents". Journal of Functional Analysis. 210 (1): 248–257. doi:10.1016/j.jfa.2003.07.009.
  • Molnár, Lajos; Šemrl, Peter (2005). "Nonlinear commutativity preserving maps on self-adjoint operators". Quarterly Journal of Mathematics. 56 (4): 589–595. doi:10.1093/qmath/hah058.
  • Šemrl, Peter (2017). "Order isomorphisms of operator intervals". Integral Equations and Operator Theory. 89 (1): 1–42. doi:10.1007/s00020-017-2395-5.
  • Šemrl, Peter; Gehér, G.P. (2020). "Coexistency on Hilbert space effect algebras and characterization of its symmetry transformations". Communications in Mathematical Physics. 379 (3): 1077–1112. doi:10.1007/s00220-020-03873-3.




References

[edit]