Jump to content

Draft:Parameter shift rule

From Wikipedia, the free encyclopedia

The parameter shift rule (PSR) is a method used in quantum computing, specifically for variational quantum algorithms (VQAs), to compute the exact gradient of an expectation value with respect to a parameter in a quantum circuit. PSRs enabl efficient and exact optimization crucial for the advancement of quantum algorithms in chemistry, optimization, and machine learning.

A variational quantum circuit (VQC) is a parameterized quantum circuit (PQC) [1] where certain gates depend on continuous parameters. These parameters are adjusted to optimize a cost function, typically the expectation value of an observable, by training the circuit in a way analogous to training weights in a neural network. To optimize the parameters, one needs to compute the gradient of the cost function with respect to these parameters. However, directly computing gradients on quantum hardware is non-trivial due to the probabilistic nature of quantum measurements and the inability to directly access the quantum state.

Known Parameter Shift Rules

[edit]

Let denote the quantum state in the Hilbert space. Consider the unitary operator , defined by a Hamiltonian and a parameter . The eigenvalues of are expressed as with real-valued . We aim to determine the mean value of a measurable observable defined as follows:

A parameterized quantum circuit (PQC) generates probabilistic results, using the expectation value of an observable as an estimate. While mean values of simple variables are obtained by averaging measurement outcomes, there are several methods to optimize the estimation of expectation values for observables involving multiple qubits[2][3][4] .

The PSRs establish connections between derivatives of a quantum function and the function's evaluations at distinct points. For the two eigenvalue Hamiltonian with the PSR is[5]

where . In[6], the latter rule is generalized to gates with eigenvalues , resulting in frequencies:

where , and are the corresponding coefficients.

In[7], the general parameter-shift rules are introduced for the scenario of evenly spaced parameter shifts (or ), where is considered to reconstruct odd (even) functions:

Parameter Selection

[edit]

References

[edit]
  1. ^ Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L. (2014). "A variational eigenvalue solver on a photonic quantum processor". Nature Communications. 5 (1): 4213. arXiv:1304.3061. Bibcode:2014NatCo...5.4213P. doi:10.1038/ncomms5213. ISSN 2041-1723. PMC 4124861. PMID 25055053.
  2. ^ Kimmel, Shelby; Low, Guang Hao; Yoder, Theodore J. (2015). "Robust calibration of a universal single-qubit gate set via robust phase estimation". Physical Review A. 92 (6): 062315. arXiv:1502.02677. Bibcode:2015PhRvA..92f2315K. doi:10.1103/PhysRevA.92.062315. ISSN 1050-2947.
  3. ^ O'Brien, Thomas E.; Tarasinski, Bartosz; Terhal, Barbara M. (2019). "Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments". New Journal of Physics. 21 (2): 023022. arXiv:1809.09697. Bibcode:2019NJPh...21b3022O. doi:10.1088/1367-2630/aafb8e. ISSN 1367-2630.
  4. ^ Markovich, L.A.; Almasi, A.; Zeytinoğlu, S.; Borregaard, J. (2023). "Quantum memory assisted observable estimation". arXiv preprint. arXiv:2212.07710. doi:10.48550/arXiv.2212.07710.
  5. ^ Li, Jian; Yang, Xiao; Peng, Xinhua; Sun, C. P. (2017). "Hybrid quantum-classical approach to quantum optimal control". Physical Review Letters. 118 (15): 150503. arXiv:1608.06644. Bibcode:2017PhRvL.118o0503L. doi:10.1103/PhysRevLett.118.150503. ISSN 0031-9007. PMID 28471364.
  6. ^ Anselmetti, Gian-Luca R.; Wierichs, David; Gogolin, Christian; Parrish, Robert M. (2021). "Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems". New Journal of Physics. 23 (11): 113010. arXiv:2104.05695. Bibcode:2021NJPh...23k3010A. doi:10.1088/1367-2630/ac2cb3.
  7. ^ Wierichs, David; Izaac, Josh; Wang, Cheng; Lin, Chao-Yuan Yao (2022). "General parameter-shift rules for quantum gradients". Quantum. 6: 677. doi:10.22331/q-2022-03-30-677. ISSN 2521-327X.
[edit]