Draft:Astroclimatology
Review waiting, please be patient.
This may take 6 weeks or more, since drafts are reviewed in no specific order. There are 1,022 pending submissions waiting for review.
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
Reviewer tools
|
Submission declined on 5 November 2024 by KeepItGoingForward (talk). This submission is not adequately supported by reliable sources. Reliable sources are required so that information can be verified. If you need help with referencing, please see Referencing for beginners and Citing sources. This submission reads more like an essay than an encyclopedia article. Submissions should summarise information in secondary, reliable sources and not contain opinions or original research. Please write about the topic from a neutral point of view in an encyclopedic manner.
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
This draft has been resubmitted and is currently awaiting re-review. |
- Comment: The article needs to be made more concise and encyclopedic in nature. Some sections are hard to follow or see the relevancy to the article's topic such as the introduction. The reference section also needs to be fixed to conform to citation standards. KeepItGoingForward (talk) 21:49, 5 November 2024 (UTC)
This article has an unclear citation style. (November 2024) |
Astroclimatology is the application of climate (the emergent property of weather statistics) to the practice of astronomy (study of the universe, here, observation by Earth telescopes). While chiefly using standard climatology, some specifics of astroclimatology led to new applications and data products. In a few cases, observing sites run their own field centers, with numerical prediction operations and climate databases. Different areas of astronomy have different interactions with Earth's atmosphere, and different needs.
Introduction
[edit]Climate is not weather.[1][2] Telescopes, in glass and metal, are durable goods, lasting centuries in some cases.[3][4] Weather, the study of the state of the atmosphere, becomes trivial per se with enough states. This span is often given as, at minimum, five years.[5][6] Larger and larger telescopes grew in upfront cost to millions (now billions) of dollars/euros; site choice is then vital in justifying investments.[7][8][9] After building such projects, current and recurrent weather states are used to maximize processes and results, as observing time is a scarce resource and recurring cost.
Astronomy from the ground is 'like bird-watching from the bottom of a pool.'[10][11] Clear air is not completely clear. Even with the naked eye, unclear air in the form of haze, fog, etc. scintillation ("twinkling") was pondered by ancient philosophers but no real obstacle to their other questions. As the telescope was invented, then grew in aperture, twinkles gave way to astronomical seeing- image distortions caused by turbulent air. On a practical, immediate level, aerial telescopes were mounted outdoors and vulnerable to the wind. Astronomy continued to expand, such as to other bands in the electromagnetic spectrum. Some bands are less affected by scintillation and seeing; others are strongly affected or even interrupted by what one perceives as "clear" air.
Atmospheric Optics and Early Efforts
[edit]Galileo Galilei, an early telescope pioneer, also invented an early thermometer. One of his students, Evangelista Torricelli, would invent the barometer, which resembled the Galilean thermometer. Blaise Pascal and others, at Torricelli's suggestion, climbed towers and mountains with barometers. They concluded we live under "an ocean of air."[12] Isaac Newton, himself an optical pioneer, would later surmise 'to take away that confusion of the Rays which arises from the Tremors of the Atmosphere. The only remedy is a most serene and quiet Air, such as may perhaps be found on the tops of the highest Mountains above the grosser clouds.[13]
Few heeded Newton's advice.[14] Telescopes were still small by today's standards, many observers were "gentlemen scientists" consuming their own resources,[15] and travel was rare and expensive. Astronomy was chiefly performed from Europe, at times the U. S. East Coast.[16][17] The early Harvard Observatory, at Cambridge, is basically at sea level, next to Boston. John Quincy Adams, then Secretary of State, in urging various groups to found U. S. Observatories,[18] recommended that 'the site nearest the College should be selected, ...proximity to the College being, in his judgement, important to the health and comfort to the Professor and the students, as the night and winter are the time and season specifically adapted to astronomical observations.'[19]
The Cape Observatory, (officially, Royal Observatory at Cape town) was nominally established in 1820. Ostensibly, choosing such a remote site gave access to Southern skies, not possible from Greenwich or similar European observatories. Note, however, that the Cape location was approved by the Board of Longitude, and Admiralty funded. They built it within site of Cape Town Harbour so it could signal time to ships, and further the British Empire; no Observatory telescope was mounted until 1828.[20]
Lassell had a 2-foot-aperture reflecting telescope in 1852. Using speculum mirrors, they had some issues, but larger apertures than refractors. He took this reflector, seeking better conditions, to Malta- still near sea level.
Well over a century after Newton, Charles Piazzi Smyth, Royal Astronomer of Scotland, examined Tenerife in 1856. His crew scaled Tenerife's Pico del Teide with a "portable" telescope and instruments.[21] His account (Teneriffe, an Astronomer's Experiment[22]) circulated among astronomers. Yet it would be about a century more before the peak would be developed into the Observatorio del Teide.[23]
An example of willful telescope siting is the 1893 U. S. Naval Observatory relocation from Foggy Bottom, to its current Georgetown Heights spot, both within Washington, D. C. This gain was from ~92 feet above sea level, to ~279' or not even 190' more altitude. At the Foggy Bottom site, the USNO, like Cape Town, displayed time to ships in the Potomac River, with the new time ball.[24] Eventually, a system of telegraphs allowed the relay of time signals without direct line of sight. The move was more a matter of contention for the downtown Washington property.[25]
Lick Observatory was the first observatory as we understand today- a permanent, mountaintop site, on Mount Hamilton, California. (A Mount Etna observatory only bore a telescope a few months out of the year.[14]) At 4200 feet, Mt. Hamilton has prominence- no similar mountain is anywhere near. James Lick commissioned a 36-inch Clark refractor, to be the world's largest. Lick had discussed exceptional altitudes for it before his death,[26] signing the choice of Mt. Hamilton himself.[27]
At the time, Harvard Observatory also looked for a better site than its own campus. Uriah A. Boyden willed money to Harvard for "observations at some station of great elevation above the level of the sea." Initial work used "Mount Harvard" near Lima, Peru, then another Peruvian site, Arequipa. This Boyden Station (8000', 2438m), like Cape Town, did Southern observations. Harvard staff also tried more-convenient peaks in Colorado and Utah;[28] they identified Mount Wilson in Southern California as "so excellent", but bought no land.[29][30][31] W. H. Pickering, Harvard astronomer and Arequipa director, stated "the selection of a proper site for an observatory is by no means merely a question of elevation."[32][33]
Three pending volumes of the Annals of the Astronomical Observatory of Harvard College- volumes XIX[34][35], XX,[36] and XXI[37][38][39]- would deal with weather, climate, and other atmospheric topics, as well as parts of volume XXIX.[40].[41]
Percival Lowell, also from Boston, founded his observatory at Flagstaff, Arizona, which was rail-accessible.[7] The Lowell Observatory is on a mesa ~350 feet above Flagstaff proper, ~3000' above the desert floor, and ~7250' above sea level. Lowell had Harvard astronomer A. E. Douglass test it in March, 1894. Lowell did no astroclimatology at all, proceeding with the side despite having only eleven nights of Douglass' data; observing began by June. Defying W. H. Pickering's experience, Lowell felt "the higher we can get the better".[42] The U. S. Naval Observatory would also open a Flagstaff station ("NOFS"). As with Cape Town, nautical requirements differ somewhat from astronomical ones. Much of the USNO concern is data needed by field units, who navigate with sextants or similar on bright stars, often at an altitude of zero. Many USNO star catalogs are thus compiled via telescopes of just 6-9 inch aperture[43][44][45] and a bit tolerant of the "disappointing"[15] seeing.
Lowell, preparing for the next Mars opposition, sought a different site to the south, to lower the airmass. A Tacubaya observatory was built, over Mexico City at ~7600' altitude.[7] "Considered astronomically," claimed lowell, "the Mexican seasons are the reverse of ours. Their winters are clear and fine, and their summers extremely stormy. So by a timely removal back to Arizona we had the advantage of the successive best seasons in the two places."[46]
Eclipses/occultations aside (constrained to shadow paths[47]), most other modern observational astronomy programs have taken the Lick choice.[48][49] Astroclimatology, then, is the initial exploration and continuing optimization of observatory sites and their observations, including Newton's "may perhaps" and Pickering's "by no means merely",[14] and far more than Lowell's eleven nights.[50][51][52][53]
Site Requirements
[edit]To early astronomers, laymen, and even many amateurs, observing time is simply an issue of clouds or not-[54] a 'cloud cover' metric,[55][56] or in aviation meteorology, "visibility." Even radio waves have finite penetrations of thick cloud- radio astronomy is mature, and very sensitive.[57] Altitude per se may put a site over low cloud, fog, hazes, etc.[58][59][60]
The rise of spectrometry and photomotry/radiometry, and general astronomical progress, drove further demands- transparency and scattering/sky brightness[61][62][63] A given night/hour may look cloud free, yet not be a "photometric night"[64] or "spectroscopic night."[65][66][23] Daytime (solar) work is even stricter: an overwhelming light means scattering that would be fine at night is now visible.[67] Such astronomers seek "coronagraphic" times.
Cloudiness is measured as a time fraction, and is not random. On wide scales, the Hadley cell males tropical air rise, then fall.[68] It rises past altitudes where water is lost to condensation/frost– the cold trap. The falling air is now dry and clear. Many telescopes have converged on the north and south latitudes of descending Hadley circulation, marked by Earth's "desert belts."[7][69]
Higher mountains in the Hadley latitudes are obvious candidates. Locally, an isolated peak may actually create descending air. At night, radiative cooling (solids viewing to cold space, not warm ground) may result in a downdraft, blowing away low cloud. This down current is also stable, being undisturbed by ground, trees, or other obstructions, unlike horizontal winds.
High winds cause telescope shake, ending observations outright[70][71][23] or by lofting dust.[72] Very low or no winds [73] now affect sensitive infrared work- the "low wind effect."[74][75][76]
On a practical level, sites also contend with accessibility, power and communications, access to supplies and spare parts, etc. [77][78][55] Unfortunately, such human activities include light pollution, dusts,[79][80] and smog, and in radio astronomy, EMI[81][82][83]Telecommunications/remote observing helps one of these, not all.
Seeing
[edit]Turbulent air takes the form of eddies or cells. The smallest cells are a few centimeters ("inner scale," or l0), limited by the viscosity of air. Different cells can maintain slight temperature differences, and different temperatures result in different indices of refraction.[84] Differing refractions bend light rays, distorting the view.[7][85] Apertures of early telescopes took a few decades to exceed l0; Huygens was the first to publish on this phenomenon.
Imperfect seeing, as one might assume, results in blurred images. Point targets, like stars, are also affected. Seeing causes points to turn into disks for nontrivial exposure times, as the target's light spreads to more halide grains/detector pixels. Spreading of light hurts sensitivity compared to one, sharp point;[86] noise is also introduced when formerly background pixels (both the cosmic background, and intervening air) are now included in the disk.[87]
The viscosity limit is a lower limit; at a given time and place, effective cell size may be larger, given as the metric r0, or "Fried parameter[88]" (Various light wavelengths, with different penetrating powers, also take different r0 values at the same time.) Astroclimatology seeks maximal r0, in turn minimizing the number of air cells in the telescope beam and their distortions of the target.
The introduction of adaptive optics did not stop astroclimate issues.[89] AO correction is imperfect, leaving residual speckles.[90][91] Times of bad seeing can exceed the bandwidth of the AO system.[92] At minimum, local conditions are used to tune AO system parameters.[93][94]
Astroclimate Metrics and Site Selection
[edit]Basic meteorology parameters- temperature, wind, humidity- are considered, as well as other measurements and derived products.[95][96][97] Unfortunately, standard meteorological grids have spacings of kilometers, too coarse for e. g., one mountaintop.[98] The met grid is still used as context and cross-comparison, for an ad hoc weather station placed on a candidate site.[99][100][101]
A precipitable water vapor (PWV) dataset is a general weather statistic, and a specific requirement for work in certain bands. However, PWV is not by itself sufficient,[102][103] as other chemicals absorb light.[104] Water vapor is local, highly anti-correlated with altitude.[105][106][107][108]
Upwind mountain ranges can also clear the skies via a rain shadow- a local water trap.[109][105][110] Unfortunately, the downwind air is disturbed: lee/gravity waves and at times roll cloud.[111][112][113][114][115][116][117] To an extent this includes mountains with no distinct peak.[118][119]
Wind is impeded by terrain, trees, etc.[120] A telescope mount is of a nontrivial size, and puts its telescope at some height. Site testing uses wind sensors on masts, to better replicate actual telescope conditions.[121][122] Since ground winds may be disturbed, some telescopes (e. g., Mayall, Bok) are mounted as towers,[123][124][125] implying the wind sensors should also be higher.[126][127][128]
All these vary with weather. An astroclimatology samples multiple weather systems (air masses and their fronts), passing on timescales of days. Seasonal effects are gauged versus each other (~months to semesters), and as seasons recur (>14 months). This still leaves secular effects.[129] As this schedule may be infeasible for a construction project,[130]general and regional meteorology data supplement astro-specific, on-site tests.[131][16] The three ELTs- TMT, GMT, and E-ELT- in particular chose sites of prior observatories.[132][129]
Seeing
Seeing was commonly measured, in a sense, by observers logging the conditions as part of their observation[133][134][135]- similar to PIREP. This lasted into the 1980s.[136][137] Manual reports are subjective- varying with training/experience- and subject to e. g., operator fatigue.[138][139]
Reports are now indirect: temperature-gradient and wind data,[140][141][102][116][142] and direct, via small telescopes.[143][144][145] In particular, wind at 200 millibar height (often, 12-14 km) is a good proxy for wind shear, thus rough air, for both aircraft and astronomy.[146][147][148][149] Other layers exist and may be gauged.[150][151] As in aviation, the Richardson number is a metric for laminar-to-turbulent tripping.[152][153][116][114]
At night, Fried's parameter r0 for much of the Earth is casually given as 12 to 15 cm (in visible light) on a good night. There are bad nights, with a lower r0, and moments of still air, with r0 higher.[154] Alternately, this equates to a telescope with ~1 arcsecond of angular resolution (defining the parameter /epsi/). Such a telescope would have few seeing effects on such nights.[155][23][156]
At world-class observing sites, r0 ~12-15 cm (or, 1 arcsec seeing) on a regular basis.[157][158] Their good nights may allow /epsi/ ~0.7 arcsec resolutions, for longer than moments. Daytime (solar) views are worse, with a heat source and agitated air. Day r0 is worse and more varying, <4 cm, to at times 9 cm. r0 at top sites may approach nighttime values.[159][160][102][161]
Other seeing metrics include coherence time, t0 (or inversely, "Greenwood frequency"), a measure of the effective cell lifetime, related to wind speed.[162][163] Good sites have longer t0: several milliseconds instead of a few ms.[164] The isoplanatic angle, /theta/, is the angular field of view over which the image distortion is one state, and can be corrected as such.[165] It is tied to ground turbulence at the site, versus turbulence at altitudes, which is more regional and smaller in angular size.[166][167]
Specific Sites
[edit]Southern California Peaks
[edit]At Mount Wilson Observatory's 1904 founding, Los Angeles was a small city in the distance. George Ellery Hale's first telescopes were solar anyway.[168] Hale, then at Yerkes Observatory, declined Lick Observatory, preferring Southern California to host new telescopes. Lick's W. J. Hussey, testing many sites, profferred Mt. Wilson.[169][168][16] A nearby ocean- nearer than at Mt. Hamilton[170]- means stable sea air.[171][172][173] Santa Ana winds begin in Fall;[174][175] Winter is worse and rainier.[168][16] Even with encroachment, CHARA (Center for High Angular Resolution Astronomy)[176] is productive at Mt. Wilson.[177] Stellar interferometry's very narrow fields admit little background and allow little light pollution, but accept the good seeing.[31][178]
It grew apparent that Los Angeles harmed sky quality. Palomar Mountain was then chosen, with many similar features but more remote,[179][180] yet not too far for Mt. Wilson/Caltech staff.[15][16] It would host the Hale Telescope, the world's largest. At 1706m, it is now a bit low.
It is from the Mt. Wilson/Palomar observatories that Caltech's Horace W. Babcock published the seminal adaptive optics paper, to make the seeing even better.[181][182]
Maunakea (and Similar)
[edit]Maunakea is a dormant volcano on the big island of Hawaii. Having the lowest latitude of its peers, it can view over the equator. Maunakea, Haleakala, and Mauna Loa were identified in the 1950s for the (International Geophysical Year). Even prior, A. E. Douglass had noted the peaks to P. Lowell.[15] All benefit from low populations and industry[183][184]; all have high altitudes, Maunakea ~4200 meters asl, the others slightly less. These are among the highest observatories in the world, and above an inversion layer (often ~2500 m)[185][186][187][188]. Much of the time, the peaks "jut through it and into the drier air above".[189]
Many factors besides simple height combine to make Maunakea 'best in the world'[190][191][192] or "best category",[193] "one of the best".[194][31][195][196] Oceanic winds have long damped out any turbulence from prior topography,[197][198][199] while these shield volcanos (with gentle, smooth slopes) add little new turbulence.[200] Radiative cooling at night, aided by the dark, volcanic soil, can add a downdraft.[201][202][203][204] The world-class seeing is almost that of the free atmosphere, dominated instead by a ground layer.[205][206]
Prior to permanent telescopes, meteorology was taken by Mauna Loa weather stations, at conditions close to Maunakea.[207][208] A Hilo record also exists, though near sea level. To verify and complement remote sensing data, radiosondes (weather balloons) were launched,[209][210] aside from standard (twice daily[153]) balloons from Hilo.[211][212] The array of telescopes has led the University of Hawaii to pool meteorology efforts into the MKWC (MaunaKea Weather Center).[213] This includes seeing forecasts, not attempted in general meteorology.[214][215]
With a climatology in hand, Summer is a better observing season.[216][217][218] Winters bring poorer weather,[219] at times the jet stream and its turbulence.[220][221] Less often, the area sees a cyclone or volcano eruption.
Northern Caucasus
[edit]The Caucasus range's Mt. Pastukhova hosts the Special Astrophysical Observatory and BTA (Bolshoi Teleskop Azimutalnyi) at 2070m. At 6 meters aperture, BTA is the largest Soviet/Russian optical telescope. The poor BTA reputation conflates its flawed mirror, dome design, and the local conditions. Pastukhova air is affected by nearby mountains, but this flaw is not crippling.[222][223][224] The primary mirror was replaced;[225][16] the dome is now cooled to help reduce its local effect ("dome seeing").[225][226][227]
The telescope's large dome, of traditional (heavy) construction, has trouble acclimating to ambient temperature, while the rather unstable local weather makes pre-cooling difficult. The resulting thermal effects cause poor local seeing much of the time.[225]
Canary Islands
[edit]Jean Mascart followed (in 1910, that is) Piazzi Smythe up Tenerife. This was organized by a tuberculosis group, but it coincided with a pass of Halley's Comet. Mascart's reports were also positive: Impressions et observations dans un voyage a Tenerife,[228] and more. Others used the site for a 1959 eclipse. Francisco Sánchez Martinez of Spain continued pursuing the Canaries as a site.[229][230][23] The Spanish Government, as did Mt. Wilson, founded a solar observatory first, the Observatorio del Teide (under the rectorship of the Universidad de La Laguna).
The first external body to use a Canarias peak was the University of Bordeaux, placing a polarimetry telescope there.[231] Around 1968, JOSO (Joint Organization for Solar Observations) was formed. Its role was to find site(s) to relocate national, solar telescopes, build similar new ones, and for one Large European Solar Telescope.[232][233][234] JOSO and others tested sites extensively; they are broadly similar to Hawaiian peaks, though lower. Both Pico del Teide and the later Roque de los Muchachos are often above a ~1,500m inversion layer[235][236] As stratovolcanos, both islands are steeper and cause some turbulence. Roque de los Muchachos is a simple peak (unlike the caldera of Pico del Teide); it presents a simpler, convex shape to the prevailing northerly winds.[23][237]
The signing of international treaties began the move of the Isaac Newton Telescope from Sussex, and construction of the William Herschel Telescope. Italy likewise chose the Canarias (for the Telescopio Nazionale Galileo[238]), as did other signatories with Spain.[239][240][241] Of the sites, La Palma tends to host stellar telescopes, while Tenerife hosts daytime observing, but both have exceptions.
The Canarias see Calima (dust blown from the Sahara), often in July/August.[242][23] Before a climatology was taken, some astronomers dismissed the Canarias as being under Calima much of the time.[243] Canarias volcanos, like Hawaiian ones, are still somewhat active.[23]
Northern Chile
[edit]Research groups had made Chilean expeditions for e. g., eclipses.[168][15] Harvard's group, before settling on Arequipa, had also toured Chile.[244] "Perhaps no spot in all America offers a clearer sky than the Desert of Atacama."[245] At the behest of Federico Rutlant (director, Chile's Observatorio Nacional),[246][247] northern countries again considered joint astronomy sites. Jürgen Stock went to examine some; his positive results drew both US and European interest. The Andes, not merely tall, act as a rain barrier, forming the Amazon basin and in turn the Atacama Desert. Also, the south Pacific current is counterclockwise and cold, adding little moisture.[248]
Cerro Tololo was first chosen. This peak is not in the Atacama, but in Coquimbo; its mountains run closer to the sea.[249] Peaks off the main range have stiller, marine air. Later sites to the north enjoy both Atacama dryness and Pacific calmness. Similarly, the new European Southern Observatory (ESO) declined South African sites,[250] picking La Silla instead.[251][252]
The later Paranal is 2635m high, and a mere 12 km from the sea- far and high enough to avoid salt, yet often in sea air.[253]
The Chajnantor area- yet further north, and inland in the main Andes- is now a hub of radio/submillimeter astronomy, and declared a Chilean science preserve. Radio waves, much longer, can tolerate turbulence per se, but still see absorption/reradiation. Atacama dryness plus extreme elevation gives extremely thin, clear air.[254][255] Cerro Chajnantor at 5640m asl holds the world record for highest observatory.[256]
The austral Summer (January-February) sees the wryly named "altiplanic winter."[257][258] Humid airmasses cross from Bolivia; at these heights, the water may fall as snow. ALMA does not observe in Jan-Feb.[259]
ESO has founded a numerical weather initiative, MOSE (MOdeling Sites ESO). It is operational.[260][261]
Mount Graham
[edit]Mount Graham, Arizona was identified as a good site in the 1980s,[262] in the National New Technology Telescope effort. While no NNTT was built, the Vatican Advanced Technology Telescope and Heinrich Hertz Telescope (a (sub/)millimeter dish) were. The later LBT (Large Binocular Telescope) resembles an NNTT concept.
The Pinaleo Mountains are inland, not coastal, in the Rocky Mountains. Still, the Pinaleos are isolated from other high mountains, giving lee air some time to dampen its eddies. Mt. Graham, the tallest (~3200 m) of few Pinaleos, is thus in calmer air than one may expect. Mt. Graham seeing is typical of the best sites.[263] Exactly because the Pinaleos are continental, not maritime, they get hot summers and cold winters.[105] Colder air than other sites- combined with altitude- means lower humidity.[264] Summers, including the Southwest Monsoon, are worse. The LBT shuts down for July-August, instead using the time for heavy maintenance and any upgrades.
The Mt. Graham weather center is named ALTA (Advanced LBT Turbulence and Atmosphere).[265][96][97]
Antarctica
[edit]Antarctic air is at 100% relative humidity.[266][267] But, due to extreme cold, this is less water than elsewhere- the 'relative' in relative humidity.[268] Antarctica as a whole is the coldest, driest, and highest continent; ice sheets may add a kilometer or more to the underlying topography. The continent is a good fit for millimeter/submillimeter astronomy.[269][270] In shorter wavelengths, lack of solar forcing and jet streams (implying stable air), low pollution, and the long polar night, would imply good viewing sites. It is, usually, not good.[271]
Katabatic winds form when coldness causes downdrafts; with few terrain/trees, these winds gain speed and force. Such winds cause turbulence and bad seeing at most sites.[272][273][274] High spots, though, have only begun katabatic flow, and the issue is low.[275][276] Dome A (4090m) and Dome C (3233m) are so high as to be candidates at any latitude. Weak katabatic winds put these sites in mostly free, calm skies. Platform-/tower-mounted telescopes help evade what wind exists (as colder air, it hugs the ground).[277][278] The Domes have begun optical/infrared work needing clarity and transparency,[279][280] and/or uninterrupted nights/days.[281][282][283]
The aurora is a polar issue.[284] Some observing bands see no aurorae; other bands may have margin to filter such emission lines. Dome C is near the center of the auroral oval- the magnetic latitudes (not 90°) with most activity.[285][286]
Other Sites
[edit]Tibet
[edit]Many Chinese telescopes were at university-convenient sites- i. e., coastal. Elevations are moderate. Then Tibet was seen as favorable for, e. g., LOT (Large Optical/infrared Telescope) or similar.[287] The plateau is high, at fairly low latitude, and in the Himalayan rain shadow. These sites considered include Ali, Lenghu,[288] and Muztagh-ata.[289]
Solar
[edit]Faced with insolation, heating, and thus turbulence on sunny days, the field of solar astronomy has found and exploited an answer: mountain lakes.[290][102] Bodies of water- even small lakes- have high thermal inertia and mixing, but no topography to trip airflow. Air is then calmer and smoother, for high resolutions. As winds do shift, placing telescopes on an islet or jetty helps the odds of good observing runs. Such sites include Locarno (on Lake Maggiore, Italy)[291], Big Bear Lake, California at ~2070m,[292][293] BAO at Lake Baikal, Russia[294], Fuxian in China (1720m),[295] and Udaipur (at Fateh Sagar Lake) in India.[296]
See also
[edit]- Adaptive optics
- Aeronomy
- Automated Surface Observing System
- Climate Reference Network
- Hydroelectric power, Colorado River Compact
- Induced lightning
- METAR, PIREP/AIREP, and G-AIRMET
- Microclimate, Precision farming, and Viticulture
- Occultometry and Lasercom
- Remote Automated Weather Station, Weather Station Kurt
- Ski report
- Supersite
- Weather reconnaissance
- Wind resource assessment
References
[edit][105]
[297]
[298]
[7]
[299]
[300]
[301]
[15]
[302]
[303]
[304]
[305]
[306]
[307]
[308]
[309]
[310]
[311]
[74]
[75]
[76]
[312]
[313]
[314]
[315]
[114]
[129]
[153]
[116]
[169]
[168]
[316]
[317]
[318]
[31]
[319]
[320]
[207]
[321]
[322]
[323]
[324]
[325]
[326]
[327]
[328]
[329]
[23]
[238]
[239]
[240]
[241]
[330]
[331]
[332]
[333]
[334]
[335]
[336]
[337]
[338]
[339]
[264]
[340]
[341]
[342]
[343]
[344]
[345]
[346]
[347]
Cite error: The <ref>
tag has too many names (see the help page).
[348]
[349]
[350]
[351]
[352]
[353]
[354]
[355]
[356]
[357]
[358]
[359]
[360]
[361]
[362]
[363]
[364] [14] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [102] [382] [383] [384] [385] [386] [387] [388] [389] [69]
Price63 [391] [392] [393] IPP: . P: ~~ Dainty Scaddan '75 Measurement of the Atmospheric Transfer Function Mnras 170 52x ~~
McCord TB Clark RN '79 Atmospheric Extinction 0.65-2.50 um Above Mauna Kea PASP 91 571 (-74, ...) [394]
Walker MF '83 A Comparison Of Observing Conditions On The Summit Cones And Shield Of Mauna Kea PASP 95 903 (-917; 918?) Bely P-Y '84 Forecasting Seeing: A First Step Proc. ESO Workshop "Site Testing for Future Large Telescopes" p.55
Racine René 1985 Astronomical Seeing at Mauna Kea and in Particular at the CFHT Proc. IAU Colloq. No. 79: Very Large Telescopes, their Instrumentation and Programs Garching p. 235
Flicker RC Rigaut FJ Sep'02 Hokupa'a Anisoplanatism and Mauna Kea Turbulence Characterization PASP 114 1006-15 Neyman C Dec'04 Atmospheric Parameters for Mauna Kea Keck Adaptive Optics Note #303
[1] _, 2007 Mauna Kea Weather Center First Symposium on Seeing Kona HI
[400] [401] [402] [403] [404] [405] [406]
Brandt Wöhl 1982 Nightingale N S Buscher D F 1991 MNRAS 251 155
Vernin J Muñoz-Tuñón C 1994 A&A 284 311 C. Denker E. Dineva H. Balthasar M. Verma C. Kuckein A. Diercke S.J. González Manrique 18 Image Quality in High-resolution and High-cadence Solar Imaging Solar Physics
Hale SJ Chaplin WJ Davies GR Ellsworth YP Howe R Pallé PL Mar'20 Measurement of Atmospheric Scintillation during a Period of Saharan Dust (Calima) at Observatorio del Teide, Iz~ana, Tenerife, and the Impact on Photometric Exposure Times PASP 132 034501 At Thomas-Osip JE 07 GMT Site Evaluation at Las Campanas Observatory RevMexAA Ser dConf 31 18
Patat F '08? The Dancing Sky: 6 years of night sky observations at Cerro Paranal A&A _ _ Patat F Moehler S O'Brien K Pompei E Bensby T. Carraro G de Ugarte Postigo A Fox A Gavignaud I James G Korhonen H Ledoux C Randall S Sana H Smoker J Stefl S Szeifert T '11 Optical atmospheric extinction over Cerro Paranal A&A 527 A91
Patat F '03 UBVRI night sky brightness during sunspot maximum at ESO-Paranal A&A 400 1183-98 Noll S Kausch W Barden M Jones AM Szyszka C Kimeswenger S Vinther J '12 An atmospheric radiation model for Cerro Paranal A&A _ _
Masciadri E Lascaux F Fini L 2013 MOSE: optical turbulence and atmospherical parameters operational forecast at ESO ground-based sites. I. Overview and atmospherical parameters vertical stratification on [0-20] km. MNRAS 436 1968 Lascaux F Masciadri E Fini L 2013 MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Souther Observatory ground-based sites - II. Atmospheric parameters in the surface layer 0-30 m MNRAS 436 3147 G
[411] [412] [413] [414] [415] [416]
Hagelin S Masciadri E Lascaux F _'10 Wind speed vertical distribution at Mt. Graham MNRAS Turchi A Masciadri E Fini L '16? Forecasts of the atmospherical parameters close to the ground at the LBT site in the context of the ALTA project a o1609.00237v1
[422] [423] [424] [425] [426] [427] [428] [429]
Epchtein N Zinnecker H [ARENA consortium] '10 The ARENA roadmap Highlights of Astronomy v 15 p 622 Jean-Baptiste Daban, Carole Gouvret , Tristan Guillot , Abdelkrim Agabi , Nicolas Crouzet , Jean-Pierre Rivet , Djamel Mekarnia , Lyu Abe , Erick Bondoux , Yan Fanteï-Caujolle , François Fressin , François-Xavier Schmider , Franck Valbousquet , Pierre-Eric Blanc, Auguste Le Van Suu, Heike Rauer, Anders Erikson, Frederic Pont, Suzanne Agrain 10 ASTEP 400: a telescope designed for exoplanet transit detection from Dome C, Antarctica 7733 _
J.S. Lawrence, M.C.B. Ashley, M.G. Burton, P.R. Gillingham, A. McGrath, R. Haynes, W. Sanders J.W.V. Storey 10 Dome C Site Testing: Implications for Science and Technology of Future Telescopes EAS Pub Ser 40 33 Ashley MCB '12 Site characteristics of the high Antarctic Plateau Proc. IAU Symp. No. 288 Astrophysics from Antarctica p. 15
Storey J.W.V. 12 Review of Antarctic astronomy PIAUS 288 1 10.1017/S1743921312016596 Guillot, T L. Abe A. Agabi J.-P. Rivet J.-B. Daban D. Me ́karnia E. Aristidi F.-X. Schmider N. Crouzet I. Gonc ̧alves C. Gouvret S. Ottogalli H. Faradji P.-E. Blanc E. Bondoux F. Valbousquet 15 AsNa Thermalizing a telescope in Antarctica – analysis of ASTEP observations 336 7 638
[55] X. Li, X. Yuan, B. Gu, S. Yang, Z. Li, F. Du 2019 Chinese Antarctic Astronomical Optical Telescopes RMxAA (Serie de Conferencias), 51, 135–138 10.22201/ia.14052059p.2019.51.23
- ^ a b Tokovnin, A. Vernin J. Ziad A. Chun M. (Apr 2005). "Optical Turbulence Profiles at Mauna Kea Measured by MASS and SCIDAR". PASP. 117 (830): 395–400. Bibcode:2005PASP..117..395T. doi:10.1086/428930.
- ^ Cite error: The named reference
turchi22
was invoked but never defined (see the help page). - ^ Nakamura08
- ^ "Collections at the Adler Planetarium". Adler Planetarium. Retrieved Aug 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ Meinel58
- ^ Menne10
- ^ a b c d e f Lowell, A. Lawrence (1935). Biography of Percival Lowell. New York: The Macmillan Company.
- ^ Bailey10
- ^ Keil01
- ^ "Arthur D. Code, Pioneering Space Astronomer, Dies". Retrieved Aug 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ "30 Years Ago: Hubble Launched to Unlock the Secrets of the Universe". Roundup. Johnson Space Center. Retrieved Oct 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ West, J. B. (2013). "Torricelli and the ocean of air: the first measurement of barometric pressure". Physiology. 28 (2): 66–73. doi:10.1152/physiol.00053.2012. PMC 3768090. PMID 23455767.
- ^ Newton, Isaac (1730). Opticks (4th ed.).
- ^ a b c d Holden, E. S. (1896). Mountain Observatories in America and Europe. Washington: Smithsonian Institution.
- ^ a b c d e f Strauss, David (2001). Percival Lowell. Cambridge: Harvard University Press. ISBN 0-674-00291-1.
- ^ a b c d e f Florence, Ronald (1994). The Perfect Machine. New York: HarperCollins. ISBN 0-06-018205-9.
- ^ Shy02
- ^ Gingerich90
- ^ Annals of the Astronomical Observatory of Harvard College. I Pt. II p.: V 1853.
{{cite journal}}
: Missing or empty|title=
(help) - ^ "The Royal Observatory at the Cape of Good Hope (1959-1971)". Retrieved Aug 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ Smith81
- ^ Piazzi Smyth, Charles (1858). Teneriffe, an Astronomer's Experiment. Cambridge University Press.
- ^ a b c d e f g h i Murdin, P. (1985). "Nighttime skies above the Canary Islands". Vistas in Astronomy. 28 (2): 449. Bibcode:1985VA.....28..449M. doi:10.1016/0083-6656(85)90069-8.
- ^ Stephens90
- ^ "History of the USNO". United States Naval Observatory.
- ^ Shane71
- ^ http://collections.ucolick.org/archives_on_line/bldg_the_obs.htm. Retrieved Aug 2024.
{{cite web}}
: Check date values in:|access-date=
(help); Missing or empty|title=
(help) - ^ Annals of the Astronomical Observatory of Harvard College. XXII: 1.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Bailey22
- ^ Plotkin90
- ^ a b c d Teare, Scott W. Thompson, Laird A. Gino, M. Colleen Palmer, Kirk A. (2000). "Eight Decades of Astronomical Seeing Measurements at Mount Wilson Observatory". PASP. 112 (777): 1496. Bibcode:2000PASP..112.1496T. doi:10.1086/317701.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Pickering, William H. (1892). "The Mountain Station of the Harvard College Observatory". Astronomy and Astro-Physics. 5: 353. Bibcode:1892AstAp..11..353P.
- ^ Sheehan p.173
- ^ "Meteorological Observations: Made During the Years 1840 to 1888 inclusive". Annals of the Astronomical Observatory of Harvard College. XIX.
- ^ Searle, Arthur (1893). "Researches on The Zodiacal Light and on a Photographic Determination of The Atmospheric Absorption". Annals of the Astronomical Observatory of Harvard College. XIX. Bibcode:1893rzlp.book.....S.
- ^ "Observations made at the Blue Hill Meteorological Observatory, Massachusetts, USA, in the year 1887". Annals of the Astronomical Observatory of Harvard College. XX.
- ^ Pickering, Edward Charles; New England Meteorological Society. (1889). "Observations of the New England Meteorological Society in the year 1888". Annals of the Astronomical Observatory of Harvard College. XXI: 1. Bibcode:1889AnHar..21....1P.
- ^ "Characteristics of the New England Climate". Annals of the Astronomical Observatory of Harvard College. XXI.
- ^ "An Investigation of the Sea-Breeze". Annals of the Astronomical Observatory of Harvard College. XXI.
- ^ "Meteorological Observations Made on The Summit of Pike's Peak, Colorado". Annals of the Astronomical Observatory of Harvard College. XXIX.
- ^ Upton, Winslow; Rotch, Abbott Lawrence; Pickering, Edward Charles (1893). "Meteorological and Other Observations Made at Willows, California in Connection with the Total Solar Eclipse of January 1, 1889". Annals of the Astronomical Observatory of Harvard College. XXIX (1): 1. Bibcode:1893AnHar..29....1U.
- ^ Sheehan p.175
- ^ Stone
- ^ deVegt
- ^ Zacharias, N.; Urban, S. E.; Zacharias, M. I.; Wycoff, G. L.; Hall, D. M.; Monet, D. G.; Rafferty, T. J. (2004). "The Second US Naval Observatory CCD Astrograph Catalog (UCAC2)". AJ. 127 (5): 3043. arXiv:astro-ph/0403060. Bibcode:2004AJ....127.3043Z. doi:10.1086/386353.
- ^ Lowell, Percival (1900). "Observations of Mars, 1896 and 1897". Annals of the Lowell Observatory. 2, Part II: 203.
- ^ Buie
- ^ "The Lick Observatory Collections Project: Home". Lick Observatory. Retrieved Aug 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ "Observatory Site Selection". Retrieved Sep 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ DaintyScaddan75
- ^ Ulich85
- ^ _04
- ^ MaciadriLascaux16
- ^ Hansen66
- ^ a b c Falvey, M. Rojo P. M. (Aug 2016). "Application of a Regional Model to Astronomical Site Testing in Western Antarctica". Theoretical Applied Climatology Journ. 125 (3–4): 841. arXiv:1605.07231. Bibcode:2016ThApC.125..841F. doi:10.1007/s00704-016-1794-x.
- ^ -. "Parameters". Instituto Astrofisicas Canarias.
{{cite web}}
:|last1=
has numeric name (help) - ^ Cortés
- ^ Stieger58
- ^ Hartley81
- ^ Bi24
- ^ Meinel58
- ^ Stock63
- ^ McCord79
- ^ Taylor04
- ^ Smith81
- ^ McInnes81
- ^ BrandtWohl82
- ^ Lloyd04
- ^ a b Aksaker, N.; Yerli, S. K.; Erdogan, M. A.; Kurt, Z.; Kaba, K.; Bayazit, M.; Yesilyaprak, C. (2020). "Global Site Selection for Astronomy". MNRAS. 493 (1): 1204. doi:10.1093/mnras/staa201.
- ^ Bely87
- ^ Cite error: The named reference
TurchiMasciadri16
was invoked but never defined (see the help page). - ^ Meinel58
- ^ Verdoni07
- ^ a b Sauvage, J.-F.; Fusco, T.; Guesalaga, A.; Wizinowitch, P.; et al. (2015). "Low Wind Effect, the main limitation of the SPHERE instrument". Ao4Elt 4. Bibcode:2015aoel.confE...9S.
{{cite journal}}
: Explicit use of et al. in:|first4=
(help) - ^ a b Vievard, S.; Bos S. P.; Cassaing F.; Ceau A.; Guyon O.; Jovanovic N.; Keller C.; Lozi J.; Martinache F.; Mary D.; Montmerle-Bonnefois L.; Mugnier L.; N’Diaye M.; Norris B.; Sahoo A.; Sauvage J.-F.; Snik F.; Wilby M. J.; Wong A. (2019). "Overview o focal plane wavefront sensors t correct f the Low Wind Effect on SUBARU/SCExAO". Ao4Elt 6.
- ^ a b Vievard, S. (2020). "Focal plane wavefront sensing on SUBARU/SCExAO". In Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (eds.). Adaptive Optics Systems VII. Vol. 11448. p. 255. arXiv:2012.12417. Bibcode:2020SPIE11448E..6DV. doi:10.1117/12.2562787. ISBN 978-1-5106-3683-5.
{{cite book}}
:|first10=
missing|last10=
(help);|first2=
missing|last2=
(help);|first3=
missing|last3=
(help);|first4=
missing|last4=
(help);|first5=
missing|last5=
(help);|first6=
missing|last6=
(help);|first7=
missing|last7=
(help);|first8=
missing|last8=
(help);|first9=
missing|last9=
(help);|journal=
ignored (help) - ^ Stock63
- ^ PricePeters67
- ^ Meinel58
- ^ Larsen
- ^ Taylor04
- ^ Buton18
- ^ aksaker
- ^ bofhu
- ^ Lloyd04
- ^ Popowicz17
- ^ Stock63
- ^ Fried
- ^ Keil01
- ^ Ridgway
- ^ Follette
- ^ Roddier]
- ^ _04
- ^ Popowicz17
- ^ Ulich85
- ^ a b c Turchi, A. Masciadri E. Fini L. (2017). "Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site". Mon. Not. R. Astron. Soc. 466 (2): 1925–943. doi:10.1093/mnras/stw2863.
- ^ a b c Turchi, A. Masciadri E. Veillet C. (2022). "Characterization of LBT atmospheric and turbulence conditions in the context of ALTA project". In Marshall, Heather K.; Spyromilio, Jason; Usuda, Tomonori (eds.). Ground-based and Airborne Telescopes IX. Vol. 12182. p. 111. arXiv:2210.11247. Bibcode:2022SPIE12182E..4OT. doi:10.1117/12.2629813. ISBN 978-1-5106-5345-0.
- ^ aksaker
- ^ CherubiniBusinger08
- ^ Hagelin10
- ^ LyanCherubiniBusinger20
- ^ a b c d e "ATST Site Survey Working Group Final Report". Advanced Technology Solar Telescope Report (#0021). 2004.
{{cite journal}}
:|first1=
missing|last1=
(help) - ^ Maud23
- ^ Tremblin12
- ^ a b c d Whiteman, C. David (2000). Mountain Meteorology: fundamentals and applications. New York: Oxford University Press. ISBN 0-19-513271-8.
- ^ Smith19
- ^ Otarola
- ^ aksaker
- ^ Meinel58
- ^ Smith19
- ^ Smith81
- ^ Verdoni07
- ^ CherubiniBusinger08
- ^ a b c Ren, Diandong; Lynch, Mervyn J. (2024). "Changes in Global Aviation Turbulence in the Remote Sensing Era (1979-2018)". Remote Sensing. 16 (11): 2038. Bibcode:2024RemS...16.2038R. doi:10.3390/rs16112038.
- ^ CherubiniBusinger08b
- ^ a b c d Storer, Luke N.; Williams, Paul D.; Gill, Philip G. (2019). "Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change". Pure Appl Geophys. 176 (5): 2081–095. Bibcode:2019PApGe.176.2081S. doi:10.1007/s00024-018-1822-0.
- ^ LymanCherubiniBusinger20
- ^ Meinel58
- ^ Ando89
- ^ Socas-Navarro05
- ^ Meinel58
- ^ nosov
- ^ Ando89
- ^ DeYoungCharles95
- ^ Hickson17
- ^ Ulich85
- ^ Redfern91
- ^ CherubiniBusinger08b
- ^ a b c Lakićević, Maša; Kimeswenger, Stefan; Noll, Stefan; Kausch, Wolfgang; Unterguggenberger, Stefanie; Kerber, Florian (2016). "Atmospheric conditions at Cerro Armazones derived from astronomical data". A&A. 588: 32. arXiv:1602.00319. Bibcode:2016A&A...588A..32L. doi:10.1051/0004-6361/201527973.
- ^ McAlister
- ^ BrandtWöhl82
- ^ Thomas07
- ^ Young1886
- ^ DaintyScaddan75
- ^ DyckHowell83
- ^ Bely87
- ^ McAlister
- ^ Meinel58
- ^ Stock63
- ^ Meinel58
- ^ BrandtWöhl82
- ^ aksaker
- ^ HarlanWalker
- ^ SarazinRoddier90
- ^ BeckersJM01
- ^ Barletti77
- ^ Carrasco05
- ^ CherubiniBusinger08b
- ^ chen19
- ^ Gaviola48
- ^ Nightingale91
- ^ Bely84
- ^ a b c Widseth, Christopher C.; Morss, Dean A. (1999). "Airborne Verification of Atmospheric Turbulence Using The Richardson Number". National Weather Digest. 123 (4): 38.
- ^ Denker18
- ^ Barletti77
- ^ Popowicz17
- ^ Ridgway
- ^ Denker08
- ^ RicortAime79
- ^ BrandtMauterSmartt87
- ^ Denker18
- ^ Mariotti83
- ^ MasciadriLascaux16
- ^ bofhu
- ^ Fried
- ^ Roddier
- ^ Socas-Navarro05
- ^ a b c d e Osterbrock, Donald E. (1993). Pauper and Prince. Tucson: University of Arizona Press.
- ^ a b Curtiss, R. H. (Dec 1926). "William Joseph Hussey". Science. 64 (1669): 612–614. Bibcode:1926Sci....64..612C. doi:10.1126/science.64.1669.612. PMID 17834470.
- ^ _04
- ^ BrandtRighini85
- ^ McAlister
- ^ Lloyd04
- ^ Meinel58
- ^ Verdoni07
- ^ "Center for High Angular Resolution Astronomy". CHARA. Georgia State University. Retrieved Oct 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ McAlister
- ^ tmr
- ^ Hale50
- ^ "A History of Palomar Observatory". Caltech Astronomy Department. California Institute of Technology.
- ^ babc
- ^ prest
- ^ Hansen66
- ^ Price67
- ^ Morrison73
- ^ McInnes81
- ^ Racine84
- ^ Smith19
- ^ Hansen66
- ^ Bely87
- ^ Ando89
- ^ Neyman04
- ^ aksaker
- ^ McInnes81
- ^ Buton18
- ^ Denge2
- ^ McInnes81
- ^ Smith81
- ^ _04
- ^ PricePales63
- ^ PricePales63
- ^ Hansen66
- ^ Morrison73
- ^ Bely87
- ^ Chun09
- ^ LymanCherubiniBusinger20
- ^ a b Sprague, Roberta A. (1991). "Measuring the Mountain: The United States Exploring Expedition on Mauna Loa, 1840-1841". Hawaiian Journal of History. 25: 71.
- ^ Price63
- ^ Bely84
- ^ McHugh
- ^ Bely87
- ^ i
- ^ "MaunaKea Weather Center". University of Hawaii.
- ^ CherubiniBusingerLyman08
- ^ LymanCherubiniBusinger20
- ^ Bely84
- ^ CherubiniBusinger08b
- ^ LymanCherubiniBusinger20
- ^ Steiger58
- ^ Morrison73
- ^ LymanCherubiniBusinger20
- ^ paa11
- ^ nosov
- ^ shik
- ^ a b c Keel, William. "Bil Keel's Telescope Life List - Bolshoi Teleskop Azimutanyi". Bill Keel's Telescope Life List. University of Alabama. Retrieved Nov 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ nosov
- ^ shik
- ^ Mascart, Jean (1910). Impressions et observations dans un voyage a Tenerife. Flammarion.
- ^ iac
- ^ fs85
- ^ gsf
- ^ Barletti77
- ^ BrandtWöhl82
- ^ BrandtRighini85
- ^ Barletti77
- ^ "Atmospheric pollution | Instituto de Astrofísica de Canarias • IAC". Instituto Astrofisicas Canarias. Retrieved Oct 2024.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ {{gaug]]
- ^ a b Ghedina, Adriano; Pedani, Marco; Garcia de Gurtubai, Albar (2015). "Atmospheric monitoring at the site of the Telescopio Nazionale Galileo". EPJ Web of Conferences. 89: 02004. Bibcode:2015EPJWC..8902004A. doi:10.1051/epjconf/20158902004.
- ^ a b Wyller, Arne A. last2=Scharmer (1985). "Sweden's Solar and Stellar Telescope On La Palma". Vistas in Astronomy. 28 (2): 467. Bibcode:1985VA.....28..467W. doi:10.1016/0083-6656(85)90070-4.
{{cite journal}}
:|first2=
missing|last2=
(help); Missing pipe in:|first1=
(help)CS1 maint: numeric names: authors list (link) - ^ a b Schroter, E. H.; Soltau, D.; Wiehr, E. (1985). "The German Solar Telescope At Th Observatorio Del Teide". Vistas in Astronomy. 28 (2): 519. Bibcode:1985VA.....28..519S. doi:10.1016/0083-6656(85)90073-X.
- ^ a b Mein, P. Rayrole J. (1985). "THEMIS Solar Telescope". Vistas in Astronomy. 28 (2): 567. Bibcode:1985VA.....28..567M. doi:10.1016/0083-6656(85)90077-7.
- ^ BrandtWöhl82
- ^ fs85
- ^ Bailey22
- ^ Bailey04
- ^ Blanco93
- ^ Donoso20
- ^ Blanco01
- ^ Hiscott22
- ^ Edmonson98
- ^ MacConnell2006
- ^ Saviane20
- ^ Sarazin94
- ^ uta
- ^ bustos
- ^ gr
- ^ Sarazin94
- ^ Cortés
- ^ Cortés
- ^ Masciadri13
- ^ Lascaux13
- ^ Ulich85
- ^ Ulich85
- ^ a b Wagner, K. Ertel S. Stone J. Leisenring J. Apai D. Kasper M. Absil O. Close L. Defrere D. Guyon O. Males J. (2021). "Imaging low-mass planets within the habitable zones of nearby stars wih ground-based mid-infrared imaging". arXiv.org (2107.14378).
- ^ . INAF [alta.arcetri.inaf.it alta.arcetri.inaf.it]. Retrieved Aug 2024.
{{cite web}}
: Check|url=
value (help); Check date values in:|access-date=
(help); Missing or empty|title=
(help) - ^ Lawrence10
- ^ Storey12
- ^ Yang
- ^ Lawrence
- ^ Ishii
- ^ Marks
- ^ Lloyd04
- ^ AristidiAgabiFossatAzouit
- ^ Cite error: The named reference
FalveyRojo
was invoked but never defined (see the help page). - ^ Lloyd04
- ^ Yang
- ^ Okita
- ^ Aristidi15
- ^ DabanGouvret
- ^ Guillot15
- ^ Fossat03
- ^ Denker08
- ^ Li19
- ^ Storey12
- ^ Kenyon06
- ^ Yang21
- ^ fenhao
- ^ Bi21
- ^ fehaca
- ^ Beckers01
- ^ spec
- ^ bbso
- ^ Verdoni07
- ^ bao
- ^ chen19
- ^ uso
- ^ Nakamura, T. (2008). "The Earliest Telescope Preserved in Japan". Journ. Astr. Hist. Herit. 11 (3): 203. doi:10.3724/SP.J.1440-2807.2008.03.04.
- ^ Menne, Matthew J.; Williams Jr., Claude N.; Palecki, Michael A. (2010). "On the relibility of the U. S. surface temperature record". Journal of Geophysical Research-Atmospheres. 115 (D11): D11. Bibcode:2010JGRD..11511108M. doi:10.1029/2009JD013094.
- ^ Bailey, Solon I. (Feb 1910). "The search for an ideal astronomical site". South African Journal of Science: 143.
- ^ Shy, J. R. (2002). "Early Astronomy in America". Journ. Astron. Hist. Herit. 5: 41. doi:10.3724/SP.J.1440-2807.2002.01.05.
- ^ Shane, M. L. (1971). "The Archives of Lick Observatory". Jour. Hist. Astron. ii: 51. Bibcode:1971JHA.....2...51S. doi:10.1177/002182867100200112.
- ^ Stone, Ronald C.; Monet, David G.; Monet, Alice K. B.; Walker, Richard L.; Ables, Harold D.; Bird, Alan R.; Harris, Frederick H. (1996). "The Flagstaff Astrometric Scanning Transit Telescope (FASTT) and Star Positions Determined in the Extragalactic Reference Frame". AJ. 111 (4): 1721. Bibcode:1996AJ....111.1721S. doi:10.1086/117913.
- ^ de Vegt, C.; Hindsley, R.; Zacharias, N.; Winter, L. (2001). "A Catalog of Faint Reference Stars in 398 Fields of Extragalactic Radio Reference Frame Sources". AJ. 121 (5): 2815. Bibcode:2001AJ....121.2815D. doi:10.1086/320386.
- ^ Bailey, Solon I. (Feb 1922). "The Harvard Astronomical Observatory in Peru". Harvard Alumni Bulletin: 487.
- ^ Bailey, Solon I. (1904). "The Arequipa Station of the Harvard Observatory". Popular Science Monthly: 510.
- ^ Buie, Marc W. Keller J. M. (2016). "The Research and Education Collaborative Occultation Network: A System for Coordinated TNO Occultation Observations". AJ. 151 (3): 73. Bibcode:2016AJ....151...73B. doi:10.3847/0004-6256/151/3/73.
- ^ Cortés, J. R. (2011). "The Impact Of The Altiplanic Winter On ALMA's Observing Conditions At Llano De Chajnantor". RevMxAA Ser. Conf. 41: 63. Bibcode:2011RMxAC..41...63C.
- ^ Fried, David L. (1994). Alloin, D. M.; Mariotti, J.-M. (eds.). "Atmospheric Turbulence Optical Effects: Understanding the Adaptive-Optics Implications". Adaptive Optics for Astronomy. 423: 25. Bibcode:1994ASIC..423...25F. doi:10.1007/978-94-015-8265-0_2 (inactive 2024-11-04).
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ Ridgway, S. T. (1994). The Impact Of Adaptive Optics On Focal Plane Instrumentation. Dordrecht: Kluwer Academic Publishers.
- ^ Follette, Katherine B. (2023). "An Introduction to High Contrast Difference Imaging of Exoplanets and Disks". Publ. Astron. Soc. Pacific. 135: 1051. doi:10.1088/1538-3873/aceb31.
- ^ Roddier, F. (1994). "The Problematic of Adaptive Optics Design". In Alloin, D. M. and Mariotti, J-M. (ed.). Adaptive Optics for Astronomy. p. 89.
{{cite book}}
: CS1 maint: multiple names: editors list (link) - ^ Larsen, Jon (2019). On the Trail of Stardust. Voyageur Press. ISBN 9780760364581.
- ^ Boffin, Henri M. J. (2016). "Lucky Imaging in Astronomy". In Hussain, Gaitee Berger, Jean-Philippe Schmidtobreick, Linda (ed.). Astronomy at High Angular Resolution. Switzerland: Springer International Publishing. ISBN 978-3-319-39737-5.
{{cite book}}
: CS1 maint: multiple names: editors list (link) - ^ Smith, Ronald B. (2019). "100 Years of Progress on Mountain Meteorology". Research Meteorological Monographs. 59 (1): 20.1.
- ^ Otarola, A. C.; Querel R.; Kerber F. (2011). "Precipitable Water Vapor: Considerations on the water vapor scale height, dry bias of the radiosonde humidity sensors, and spatial and temporal variability of the humidity field". arxiv.org: 1103.3025. arXiv:1103.3025.
- ^ McAlister, H. A. (1995). "Site Selection for the CHARA Array" (PDF). CHARA Technical Report: No. 13.
- ^ ten Brummelaar, T. A.; McAlister, Harold Alister; Ridgway, S. T.; W. G. (2008). "First results for the CHARA array. II A description of the instrument". ApJ. 628 (1): 453.
{{cite journal}}
: Unknown parameter|DUPLICATE_last4=
ignored (help) - ^ Hale, George E. (1950). Frontiers In Space. California Institute of Technology.
- ^ Babcock, Horace W. (1953). "The Possibility of Correcting Astronomical Seeing". Pub. Astron. Soc. of the Pacific. 65: 239. doi:10.1086/126606.
- ^ Preston, George W. (2004). "Horace Welcome Babcock". Pub. Astron. Soc. of the Pacific. 116: 290. doi:10.1086/382664.
- ^ _, _. "Station inventory". Integrated Global Radiosonde Archive. National Centers for Environmental Information.
{{cite web}}
:|last1=
has numeric name (help) - ^ Panchuk, Vladimir; Afanas'ev, V. L. (2011). "Astroclimate of Northern Caucasus- Myths and Reality". Astrophysics Bulletin. 66 (2): 233. Bibcode:2011AstBu..66..233P. doi:10.1134/S199034131102009X.
- ^ Keel, William. "Bill Keel's Telescope Life List - Bolshoi Teleskop Azimultanyi". Bill Keel's Telescope Life List. University of Alabama.
- ^ Nosov, V. V.; Lukin V. P.; Nosov E. V.; Torgaev A. V.; Afanas'ev V. L.; Balega Yu. U.; Vlasyuk V. V.; Panchuk V. E.; Yakopov G. V. (2019). "Astroclimate Studies in the Special Astrophysics Observatory of the Russian Academy of Sciences". Atmospheric and Oceanic Optics. 32 (1): 8. doi:10.1134/S1024856019010111.
- ^ Shikhovtsev, A. Yu.; Bolbasova, L. A.; Kovadlo, P. G.; Kiselev, A. V. (2020). "Atmospheric parameters of the 6-m Big Telescope Alt-azimuthal site". Mon. Not. R. Ast. Soc. 493 (1): 723. doi:10.1093/mnras/staa156.
- ^ Mascart, Jean (1911). Impressions et observations dans un voyage a Tenerife. Paris: Flammarion.
- ^ "History | Instituto de Astrofísica de Canarias • IAC".
- ^ Sánchez, F. (1985). "Astronomy in the Canary Islands". Vistas in Astronomy. 28 (2): 417. Bibcode:1985VA.....28..417S. doi:10.1016/0083-6656(85)90066-2.
- ^ "Francisco Sanchez".
- ^ Blanco, V. "Brief History of the Cerro Tololo Inter-American Observatory". Retrieved 7/24.
{{cite web}}
: Check date values in:|access-date=
(help) - ^ Donoso, F. (2020). "La Astronomía en Chile hoy". Enfoque. No. 20.
- ^ Blanco, V. (2001). "Telescopes, Red Stars, and Chilean Skies". Ann. Rev. Astron. Astroph. 39: 1. Bibcode:2001ARA&A..39....1B. doi:10.1146/annurev.astro.39.1.1.
- ^ Hiscott, L. (2022). [noirlab.edu/public/blog/anniversary-ctio/ "60 Years of Discovery from Cerro Tololo, the Observatory on the "Edge of the Abyss""].
{{cite news}}
: Check|url=
value (help) - ^ Edmonson, Frank K. (1998). "The Ford Foundation and the European Southern Observatory". J. History Astronomy. 29 (4): 309. Bibcode:1998JHA....29..309E. doi:10.1177/002182869802900401.
- ^ MacConnell, D. J. (2006). "Homage to Jürgen Stock". RevMxAA Ser. De Conf. 25: 73. Bibcode:2006RMxAC..25...73M.
- ^ Saviane, I.; Leibundgut B.; Schmidtobreick L. (2020). "The La Silla Observatory-From Inauguration to the Future". Messenger. 179.
- ^ "Site Study".
- ^ Bustos, Ricardo; Delgado, Guillermo; Nyman, Lars-Åke; Radford, Simon (2009). [library.nrao.edu/public/memos/alma/main/memo333.pdf "52 Years of Climatological Data for the Chajnantor Area"] (PDF). ALMA Memo (333).
{{cite journal}}
: Check|url=
value (help) - ^ [guinnessworldrecords.com/world-records/highest-astronomical-observatory "Highest Astronomical Observatory"]. Guinness World Records.
{{cite web}}
: Check|url=
value (help) - ^ Yang, H. Kulesa C. A. Walker Tuthill Yang J. Ashley M. C. B. Cui X. Feng L. Lawrence J. S. Luong-Van D. M. McCaughrean M. J. Storey J. W. V. Wang L. Zhou X. Zhu Z. (2010). "Exceptional Terahertz Transparency and Stability above Dome A, Antarctica". Pasp. 122 (890): 490. Bibcode:2010PASP..122..490Y. doi:10.1086/652276.
- ^ Lawrence, J. S. (2004). "Infrared and Submillimeter Atmospheric Characteristics of High Antarctic Plateau Sites". Pasp. 116 (819): 482. Bibcode:2004PASP..116..482L. doi:10.1086/420757.
- ^ Ishii, S. Seta M. Nakai N. Nagai S. Miyagawa N. Yamauchi A. Motoyama H. Taguchi M. (2010). "Site testing at Dome Fuji for submillimeter and terahertz astronomy: 220 GHz atmospheric-transparency". Polar Sci. 3 (4): 213. Bibcode:2010PolSc...3..213I. doi:10.1016/j.polar.2009.08.001.
- ^ Marks, R. D. (2002). "Astronomical seeing from the summits of the Antarctic Plateau". A&A. 385: 328. arXiv:astro-ph/0112068. Bibcode:2002A&A...385..328M. doi:10.1051/0004-6361:20020132.
- ^ Okita, H. Ichikawa T. Ashley M. C. B. Takato Motoyama H. (2013). "Excellent daytime seeing at Dome Fuji on the Antarctic plateau". A&A. 554: L5. arXiv:1305.5109. Bibcode:2013A&A...554L...5O. doi:10.1051/0004-6361/201321937.
- ^ Aristidi, E Vernin J Fossat E Schmider F-X Travouillon T Pouzenc C Traullé O Genthon C Agabi A Bondoux E; et al. (Dec 2015). "Monitoring the optical turbulence in the surface layer at Dome C, Antarctica, with sonic anemometers". Mon. Not. R. Astron. Soc. 454 (4): 4304. doi:10.1093/mnras/stv2273.
{{cite journal}}
: Explicit use of et al. in:|first1=
(help) - ^ Fossat, E (2003). "Visible Astronomy as well? Why not !". Mem. Soc. As. It. Suppl. 2: 139.
- ^ Yang, X Shang, Z Hu, K; et al. (2021). "Cloud Cover and auroral contamination at Dome A in..." MNRAS. 501: 3614. doi:10.1093/mnras/staa3824.
{{cite journal}}
: Explicit use of et al. in:|first1=
(help)CS1 maint: multiple names: authors list (link) - ^ Feng, L. Hao J-X. (2021). "Cao Site Test campaign for the Large Optical/infrared Telescope of China: over". Res. Ast. Astr. 20: 80.
- ^ "Specola Solare".
- ^ "Big Bear Solar Observatory".
- ^ [en.iszf.irk.ru/Baikal_Astrophysical_Observatory "Baikal Astrophysical Observatory"].
{{cite web}}
: Check|url=
value (help) - ^ Chen, Li-Hui Liu, Zhong Chen, Dong (2019). "Climatological analysis of the seeing at Fuxian Solar Observatory". ResAsAp. 19 (1): 15. Bibcode:2019RAA....19...15C. doi:10.1088/1674-4527/19/1/15.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "Udaipur Solar Observatory".
- ^ Bernlöhr, Konrad (2000). "Impact of atmospheric parameters on the atmospheric Cherenkov technique". Astropart Phys. 12 (4): 255. arXiv:astro-ph/9908093. Bibcode:2000APh....12..255B. doi:10.1016/S0927-6505(99)00093-6.
- ^ Nolan, S. J. Pühlhofer G. Rulten C. B. (2010). "Detailed Studies of Atmospheric Calibration in Imaging Cherenkov Astronomy". Astropart. Phys. 34 (5): 304. arXiv:1009.0517. Bibcode:2010APh....34..304N. doi:10.1016/j.astropartphys.2010.08.009.
- ^ Sobczyńska, Dorota Bednarek Włodek (2014). "Influence of clouds on the parameters of images measured by IACT at very high energies". JPhysG: Nuc Phys. 41 (12). arXiv:1409.8337. Bibcode:2014JPhG...41l5201S. doi:10.1088/0954-3899/41/12/125201.
- ^ BenZvi, Segev Boháčová Martina Connolly Brian Grygar Jirí Hrabovsky Miroslav; et al. (2007). "New method for atmospheric calibration at the Pierre Augur Observatory using FRAM, a robotic astronomical".
{{cite journal}}
: Cite journal requires|journal=
(help); Explicit use of et al. in:|first1=
(help) - ^ Louedec, Karim Pierre Auger Collaboration (2011). "Atmospheric Monitoring at the Pierre Auger Observatory- Status and Update". 32nd International Cosmic Ray Conference. 2: 63. Bibcode:2011ICRC....2...63L.
- ^ Jankowski, Felix Wagner Stefan (2015). "Weather and atmosphere observation with the ATOM all-sky camera". EPJ Web of Conferences. 89: 03008. Bibcode:2015EPJWC..8903008J. doi:10.1051/epjconf/20158903008.
- ^ Ebr, Jan Mandát Dušan Pech Miroslav Chytka Ladislav Juryšek Jakub Prouza Michael Janeček Petr Trávníček Petr Blažek Jiri; et al. (2019). "Prototype operations of atmospheric calibration devices for the Cherenkov Telescope Array". Proc of Science, 36th ICRC, Madison WI. 358: 769.
{{cite journal}}
: Explicit use of et al. in:|first1=
(help) - ^ Gaug, Markus Longo, Alessandro Bianchi, Stefano Font, Lluís Almirante, Sofia; et al. (2024). "Detailed analysis of local climate at the CTAO-North site on La Palma from 20 yr of MAGIC weather station data". MNRAS. 534 (3): 2344. doi:10.1093/mnras/stae2214.
{{cite journal}}
: Explicit use of et al. in:|first1=
(help)CS1 maint: multiple names: authors list (link) - ^ Aslam, O. P. M. Bischoff D. Potgieter M. S. (2019). "The solar modulation of protons and anti-protons". Proceedings of Science: 1054.
- ^ Knutsen, E. W. Witasse O. Sanchez-Cano B. Lester M. Wimmer-Schweingruber R. F. Denis M. Godfrey J. Johnstone A. (2021). "Galactic cosmic ray modulation at Mars and beyond measured with EDACs on Mars Express and Rosetta". A&A. 650: A165. Bibcode:2021A&A...650A.165K. doi:10.1051/0004-6361/202140767.
- ^ Young, C. A. (1886). Observatory.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Stock, Jurgen (1963). J. Rösch (ed.). "Procedure for Location of Astronomical Observatory Sites". Proc IAU Symp. 19 le Choix des Sites d'Observation Astronomiques: 35.
- ^ Harlan, E. A.; Walker, Merle F. (1965). "A Star-Trail Telescope for Asrronomical Site-Testing". PASP. 77 (457): 246. Bibcode:1965PASP...77..246H. doi:10.1086/128210.
- ^ Hansen, R. T.; Hansen; Price (1966). "An Example of Meteorological Considerations in Selecting an Observatory Site in Hawaii". Pub. Astron. Soc. Pacific. 78 (461): 14. Bibcode:1966PASP...78...14H. doi:10.1086/128286.
- ^ Morrison, D.; Murphy; Cruikshank; et al. (73). "Evaluation of Mauna Kea, Hawaii, as an Observatory Site". Publ. Astron. Soc. Pacific. 85 (505): 255. Bibcode:1973PASP...85..255M. doi:10.1086/129449.
{{cite journal}}
: Check date values in:|date=
(help) - ^ McCord, T. B.; Clark. "1979". Publ. Astron. Soc. Pacific. 91: 571. doi:10.1086/130538.
- ^ Walker, M. F. (83). "A comparison of observing conditions on the summit cones and shield of Mauna Kea". Publ. Astron. Soc. Pacific. 95: 903. Bibcode:1983PASP...95..903W. doi:10.1086/131270.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Lynds, R.; Goad, J. W. (Sep 1984). "Observatory-Site Reconnaissance". Publ. Astron. Soc. Pacific. 96: 750–766. Bibcode:1984PASP...96..750L. doi:10.1086/131416.
- ^ Barr, L. D. (1985). "The 15-Meter National New Technology Telescope: An Update". Proc. IAU Colloq. No. 79: Very Large Telescopes, Their Instrumentation and Programs: 727.
- ^ West, R. M. (1985). "Identification and Protection of Existing and Potential Observatory Sites". Trans. IAU. 4: 707.
- ^ Merrill, K. M.; Favot, G.; Forbes, F.; Morse, D.; Poczulp, G. (Aug 20, 1986). Barr, Lawrence D. (ed.). "Planning the National New Technology Telescope (NNTT): VII. site evaluation project observation and analysis procedures". Proc. SPIE. Advanced Technology Optical Telescopes III. 628: 125. Bibcode:1986SPIE..628..125M. doi:10.1117/12.963519.
- ^ Merrill, K. M.; Forbes, F. F. (Mar 17, 1987). "Comparison Study of Astronomical Site Quality of Mount Graham and Mauna Kea" (PDF). Millimeter Array Memo (39).
- ^ Sheehan, William (1988). Planets and Perception: telescopic views and interpretations, 1609-1909. Tucson: University of Arizona Press. ISBN 978-0-8165-1059-7.
- ^ Sarazin, M.; Roddier, F. (1990). "The ESO differential image motion monitor". Astronomy & Astrophysics. 227: 294.
- ^ Sarazin, M. (1994). "Site Surveys, from Pioneering Times to the VLT Era". Messenger. 76: 12. Bibcode:1994Msngr..76...12S.
- ^ Beckers, J. M. (2001). "A Seeing Monitor for Solar and Other Extended Object Observations". Experimental Astronomy. 12 (1): 1. Bibcode:2001ExA....12....1B. doi:10.1023/A:1015712720291.
- ^ Keil, S. L.; Rimmele, T. R.; Keller, C. U.; ATST Team (2001). "The Advanced Technology Solar Telescope". ASP Conf Ser. 236: 597.
- ^ Businger, S.; McLaren, R.; Gasawara, R. O.; Simons, D.; Wainscoat, R. J. (Jun 2002). "Starcasting". Bull Am Met Soc. 83 (6): 858–871. Bibcode:2002BAMS...83..858B. doi:10.1175/1520-0477(2002)083<0858:S>2.3.CO;2.
- ^ García-Lorenzo, B.; Fuensalida, J. J.; Muñoz-Tuñón, C.; Mendizabal, E. (2005). "Astronomical site ranking based on tropospheric wind statistics". MNRAS. 356 (3): 849–858. arXiv:astro-ph/0410599. Bibcode:2005MNRAS.356..849G. doi:10.1111/j.1365-2966.2004.08542.x.
- ^ Racine, René (Apr 2005). "Altitude, Elevation, and Seeing". Publ. Astron. Soc. Pacific. 117 (830): 401–10. Bibcode:2005PASP..117..401R. doi:10.1086/429307.
- ^ Socas-Navarro, J.; Beckers J.; Brandt P.; Briggs J.; Brown T.; Brown W.; Collados M.; Denker C.; Fletcher S.; Hegwer S.; Hill F.; Horst T.; Komsa M.; Kuhn J.; et al. (2005). "Solar Site Survey for the Advanced Technology Solar Telescope. I. Analysis of the Seeing Data". Publ. Astron. Soc. Pacific. 117 (837): 1296. arXiv:astro-ph/0508690. Bibcode:2005PASP..117.1296S. doi:10.1086/496939.
- ^ Skidmore, W.; Els S.; Travouillon T.; Riddle R.; Schöck M.; Bustos E.; Seguel J.; Walker D. (Oct 2009). "Thirty Meter Telescope Site Testing V: Seeing and Isoplanatic Angle". PASP. 121 (884): 1151–66. Bibcode:2009PASP..121.1151S. doi:10.1086/644758.
- ^ Els, S.; Travouillon T.; Schöck M.; Riddle R.; Skidmore W.; Seguel J.; Bustos E.; Walker D. (May'09). "Thirty Meter Telescope Site Testing VI: Turbulence Profiles". PASP. 121 (879): 527–43. arXiv:0904.1865. Bibcode:2009PASP..121..527E. doi:10.1086/599384.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Masciadri, E.; Lascaux F.; Turchi A.; Fini L. (2016). Marchetti, Enrico; Close, Laird M.; Véran, Jean-Pierre (eds.). "Operational optical turbulence forecast for the Service Mode of top-class ground based telescopes". Adaptive Optics Systems V. 9909: 1608.06506v1. arXiv:1608.06506. Bibcode:2016SPIE.9909E..0IM. doi:10.1117/12.2231196.
- ^ Hickson, P. (Mar 2017). "TMT image quality at Mauna Kea and La Palma".
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Popowicz, Adam; Radlak Krystian; Bernacki Krzysztof; Orlov Valeri (2017). "Review of Image Quality Measures for Solar Imaging". Solar Physics. 292 (12): 187. arXiv:1709.09458. Bibcode:2017SoPh..292..187P. doi:10.1007/s11207-017-1211-3.
- ^ Steiger, Walter R.; Little, John W. (1958). "On the Feasibility of a Solar Observatory in the Hawaiian Islands". Pasp. 70 (417): 556. Bibcode:1958PASP...70..556S. doi:10.1086/127295.
- ^ Price, S. Pales (1967). "Mauna Loa Observatory: The first five years". J Am Met Soc.
- ^ Hansen, R. T. Hansen S. F. Price S. (1966). "An Example Of Meteorological Considerations In Selecting An Observatory Site In Hawaii". PASP. 78 (461): 14. Bibcode:1966PASP...78...14H. doi:10.1086/128286.
- ^ Morrison, D. Murphy R. E. Cruikshank D. P. Sinton W. M. Martin T. Z. (1973). "Evaluation Of Mauna Kea, Hawaii As An Observing Site". PASP. 85 (505): 255. Bibcode:1973PASP...85..255M. doi:10.1086/129449.
- ^ Dyck, H. M. Howell R. R. (Oct 1983). "Seeing Measurements at Mauna Kea from Infrared Speckle Interferometry". PASP. 95 (786–91): 786. Bibcode:1983PASP...95..786D. doi:10.1086/131255.
- ^ Bely, Pierre-Yves (Jun 1987). "Weather and Seeing on Mauna Kea". PASP. 99: 560–70. Bibcode:1987PASP...99..560B. doi:10.1086/132018.
- ^ Henry, J. P. Heyer I. Cecil G. Barnes B. Cheigh F. (1987). "Synoptic Seeing Measurements at the University of Hawaii 2.2-m Telescope". PASP. 99: 1354. Bibcode:1987PASP...99.1354H. doi:10.1086/132125.
- ^ Ando, H. Noguchi T. Nakagiri M. Miyashita A. Yamashita Y. Nariai K. Tanabe H. (1989). "Evaluation of the JNLT Site". Ap&SS. 160 (183–89).
- ^ Racine, René (1989). "Atmospheric and Facility Seeing on Mauna Kea, Hawaii". PASP. 101 (436–40): 436. Bibcode:1989PASP..101..436R. doi:10.1086/132453.
- ^ Racine, René (1996). "Temporal Fluctuations of Atmospheric Seeing". PASP. 108: 372–74. Bibcode:1996PASP..108..372R. doi:10.1086/133732.
- ^ Cherubini, T. Businger S. Lyman R. Chun M. (2008). "Modeling Optical Turbulence and Seeing over Mauna Kea". J Appl Met and Clim. 47 (4): 1140. Bibcode:2008JApMC..47.1140C. doi:10.1175/2007JAMC1487.1.
- ^ Cherubini, T. Businger S. Lyman R. (Dec 2008). "Modeling Optical Turbulence and Seeing over Mauna Kea: Verification and Algorithm Refinement". J Appl Met and Clim. 47 (12): 3033–043. Bibcode:2008JApMC..47.3033C. doi:10.1175/2008JAMC1839.1.
- ^ McHugh, J. P. Jumper G. Y. Chun M. (Dec 2008). "Balloon Thermosonde Measurements over Mauna Kea and Comparison with Seeing Measurements". PASP. 120 (874): 1318–324. Bibcode:2008PASP..120.1318M. doi:10.1086/595871.
- ^ Chun, Mark Wilson R. Avila R. Butterley T. Aviles J.-L. Wier D. Benigni S. (2009). "Mauna Kea ground-layer characterization campaign". MNRAS. 394 (1121–130): 1121. Bibcode:2009MNRAS.394.1121C. doi:10.1111/j.1365-2966.2008.14346.x.
- ^ Buton, C Copin Y Aldering G Antilogus P Aragon C Bailey S Baltay C Bongard S Canto A Cellier-Holzem F Childress M Chotard K Fakhouri Gangler E Guy J Hsiao EY; et al. (2018). "Atmospheric extinction properties above Mauna Kea from the Nearby Supernova Factory spectro-photometric data set". A&A. 549: 8.
{{cite journal}}
: Explicit use of et al. in:|first1=
(help) - ^ Lyman, R. Cherubini T. Businger S. (2020). "Forecasting seeing for the Maunakea Observatories". MNRAS. 496 (4734–748): 4734–4748. doi:10.1093/mnras/staa1787.
- ^ Cherubini, T. Lyman R. Businger S. (2022). "Forecasting seeing for the Maunakea observatories with ML". Mon. Not. R. Astron. Soc. 509: 232. doi:10.1093/mnras/stab2916.
- ^ Barletti, R. Ceppatelli G. Paternò L. Righini A. Speroni N. (1977). A&A. 454: 649.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Hartley, M. McInnes B. (1981). "Microthermal Fluctuations and Their Relation to Seeing". Quart. J. R. Astron. Soc. 22 (3): 272.
- ^ Smith, F. G. (1981). "The New Observatory on La Palma". Quart. J. R. Astron. Soc. 22: 254.
- ^ McInnes, B. (1981). Quart. J. R. Astron. Soc. 22: 266.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Ulich, B. L. Davison W. B. (Jul 1985). "Seeing Measurements On Mount Graham". PASP. 97: 609–15. Bibcode:1985PASP...97..609U. doi:10.1086/131575.
- ^ Taylor, Violet A. Jansen R. A. Windhorst R. A. (Aug'04). "Observing Conditions at Mount Graham: Vatican Advanced Technology Telescope /UBVR/ Sky Surface Brightness and Seeing Measurements from 1999 through 2003". PASP. 116 (822): 762–77. arXiv:astro-ph/0406495. Bibcode:2004PASP..116..762T. doi:10.1086/422929.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Duriscoe, Dan M. Luginbuhl Moore (2007). "Measuring Night-Sky Brightness with a Wide-Field CCD Camera". PASP. 119 (852): 192–213. arXiv:astro-ph/0702721. Bibcode:2007PASP..119..192D. doi:10.1086/512069.
- ^ Egner, S. E. Masciadri E. McKenna D. (Jun 2007). "Generalized SCIDAR Measurements at Mount Graham". PASP. 119 (669–86): 669. Bibcode:2007PASP..119..669E. doi:10.1086/519461.
- ^ Egner, S. E. Masciadri E. (Dec 2007). "A G-SCIDAR for Ground-Layer Turbulence Measurements at High Vertical Resolution". PASP. 119 (862): 1441–448. Bibcode:2007PASP..119.1441E. doi:10.1086/524850.
- ^ Pedani, M. (2009). "Sky Surface Brightness at Mount Graham: UBVRI Science Observations". PASP. 121: 778–86. arXiv:0905.3404. doi:10.1086/603605.
- ^ Masciadri, E. Turchi A. Fini L. (2019). "Optical turbulence forecast in the Adaptive Optics realm". arXiv.org (1902.07989v1).
- ^ Lawrence, J. S. Ashley M. C. B. Burton M. G. Lloyd J. P. Storey J. W. V. (2005). "The Unique Antarctic Atmosphere: Implications for Adaptive Optics". Science with Adaptive Optics. ESO Astrophysics Symposia: 111. Bibcode:2005sao..conf..111L. doi:10.1007/10828557_19. ISBN 3-540-25034-4.
- ^ Burton, M. G. Storey J. W. V. Ashley M. C. B. (2001). "Science Goals for Antarctic Infrared Telescopes". PASA. 18 (2): 158-65. Bibcode:2001PASA...18..158B. doi:10.1071/AS01026.
- ^ Aristidi, E. Agabi A. Vernin J. Azouit M. Martin F. Ziad A. Fossat E. (2003). "Antarctic site testing: First daytime seeing monitoring at Dome C". A&A. 406: L19–L22. Bibcode:2003A&A...406L..19A. doi:10.1051/0004-6361:20030836.
- ^ Lawrence, J. S. Ashley M. C. B. Tokovnin A. Travouillon T. (16 Sep 2004). "Exceptional astronomical seeing conditions above Dome C in Antarctica". Nature. 431 (7006): 278–281. Bibcode:2004Natur.431..278L. doi:10.1038/nature02929. PMID 15372024.
- ^ Lloyd, James P. (2004). Traub, Wesley A. (ed.). "Optical Turbulence in the Antarctic Atmosphere". PSPIE. New Frontiers in Stellar Interferometry. 5491: 190. Bibcode:2004SPIE.5491..190L. doi:10.1117/12.552226.
- ^ Aristidi, E., Agabi A., Fossat E., Travouillon T., Azouit M., Vernin J., Ziad A., Martin F. Robuchon G. (2005). "Daytime site testing at Dome C: Results of 2003 2004 campaign". EAS Publications Series. 14: 13–18. Bibcode:2005EAS....14...13A. doi:10.1051/eas:2005004.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Aristidi, E. Agabi A. Fossat E. Azouit M. Martin F. Sadibekova T. Travouillon T. Vernin J. Ziad A. (2005). "Site testing in summer at Dome C, Antarctica". A&A. 444 (2): 651-59. arXiv:astro-ph/0507475. Bibcode:2005A&A...444..651A. doi:10.1051/0004-6361:20053529.
- ^ Kenyon, S. L. Storey J. W. V. (2006). "A Review of Optical Sky Brightness and Extinction at Dome C, Antarctica". Pub. Astron. Soc. Pacific. 118 (841): 489. arXiv:astro-ph/0511510. Bibcode:2006PASP..118..489K. doi:10.1086/499631.
- ^ Kenyon, S. L. Lawrence J. S. Ashley M. C. B. Storey J. W. V. Tokovnin A. Fossat E. (Jun 2006). "Atmospheric Scintillation at Dome C, Antarctica: Implications for Photometry and Astrometry". PASP. 118 (844): 924-32. arXiv:astro-ph/0604538. Bibcode:2006PASP..118..924K. doi:10.1086/505409.
- ^ Swain, M. R. Gallée H. (Aug 2006). "Antarctic Boundary Layer Seeing". PASP. 118 (846): 1190-97. Bibcode:2006PASP..118.1190S. doi:10.1086/507153.
- ^ Carsten, Denker Klaus G. Strassmeier (2008). "Solar Physics and the Solar-Stellar Connection at Dome C". EAS Publications Series. 33: 97. arXiv:0712.1471. Bibcode:2008EAS....33...97D. doi:10.1051/eas:0833014.
- ^ Travouillon, T. Jolissaint L. Ashley M. C. B. Lawrence J. S. T. Storey J. W. V. Storey (2009). "Overcoming the Boundary Layer Turbulence at Dome C: Ground-Layer Adaptive Optics versus Tower". Pub. Astron. Soc. Pacific. 121 (880): 668. Bibcode:2009PASP..121..668T. doi:10.1086/600077.