The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function with one:
These identities include applications to sums of an arithmetic function over just the proper prime divisors of .
We also define periodic variants of these divisor sums with respect to the greatest common divisor function in the form of
Well-known inversion relations that allow the function to be expressed in terms of are provided by the Möbius inversion formula.
Naturally, some of the most interesting examples of such identities result when considering the average order summatory functions over an arithmetic function defined as a divisor sum of another arithmetic function . Particular examples of divisor sums involving special arithmetic functions and special Dirichlet convolutions of arithmetic functions can be found on the following pages:
here, here, here, here, and here.
The following identities are the primary motivation for creating this topics page. These identities do not appear to be well-known, or at least well-documented, and are extremely useful tools to have at hand in some applications. In what follows, we consider that are any prescribed arithmetic functions and that denotes the summatory function of . A more common special case of the first summation below is referenced here.[1]
In general, these identities are collected from the so-called "rarities and b-sides" of both well established and semi-obscure analytic number theory notes and techniques and the papers and work of the contributors. The identities themselves are not difficult to prove and are an exercise in standard manipulations of series inversion and divisor sums. Therefore, we omit their proofs here.
The convolution method is a general technique for estimating average order sums of the form
where the multiplicative function f can be written as a convolution of the form for suitable, application-defined arithmetic functionsg and h. A short survey of this method can be found here.
An arithmetic function is periodic (mod k), or k-periodic, if for all . Particular examples of k-periodic number theoretic functions are the Dirichlet characters modulo k and the greatest common divisor function . It is known that every k-periodic arithmetic function has a representation as a finite discrete Fourier series of the form
where the Fourier coefficients defined by the following equation are also k-periodic:
We are interested in the following k-periodic divisor sums:
It is a fact that the Fourier coefficients of these divisor sum variants are given by the formula [2]
Let the function denote the characteristic function of the primes, i.e., if and only if is prime and is zero-valued otherwise. Then as a special case of the first identity in equation (1) in section interchange of summation identities above, we can express the average order sums
We also have an integral formula based on Abel summation for sums of the form [4]
We adopt the notation that denotes the multiplicative identity of Dirichlet convolution so that for any arithmetic function f and . The Dirichlet inverse of a function f satisfies for all . There is a well-known recursive convolution formula for computing the Dirichlet inverse of a function f by induction given in the form of [7]
For a fixed function f, let the function
Next, define the following two multiple, or nested, convolution variants for any fixed arithmetic function f:
The function by the equivalent pair of summation formulas in the next equation is closely related to the Dirichlet inverse for an arbitrary function f.[8]
A table of the values of for appears below. This table makes precise the intended meaning and interpretation of this function as the signed sum of all possible multiple k-convolutions of the function f with itself.
^ abM. Merca and M. D. Schmidt (2017). "Factorization Theorems for Generalized Lambert Series and Applications". pp. 13–20. arXiv:1712.00611 [math.NT].
^This identity is proved in an unpublished manuscript by M. D. Schmidt which will appear on ArXiv in 2018.