Jump to content

Dihydrolevoglucosenone

From Wikipedia, the free encyclopedia
Dihydrolevoglucosenone
Names
IUPAC name
(1R,5S)-7,8-Dioxabicyclo[3.2.1]octan-2-one
Other names
Cyrene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.234.612 Edit this at Wikidata
EC Number
  • 807-130-4
  • InChI=1S/C6H8O3/c7-5-2-1-4-3-8-6(5)9-4/h4,6H,1-3H2/t4-,6+/m0/s1
    Key: WHIRALQRTSITMI-UJURSFKZSA-N
  • [C@H]12CCC([C@H](OC1)O2)=O
Properties
C6H8O3
Molar mass 128.127 g·mol−1
Appearance clear to yellowish liquid
Density 1.2473 g/cm3 (25 °C) [1]
Boiling point 226 °C (439 °F; 499 K)[2]
miscible
Vapor pressure 12.98 Pa (25 °C) [1]

14.4 Pa (25 °C) [2]

1.4732 (20 °C) [2]
Hazards[3]
GHS labelling:
GHS07: Exclamation mark
Warning
H319
P305+P351+P338, P313
Flash point 108 °C (226 °F; 381 K)
296 °C (565 °F; 569 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dihydrolevoglucosenone (Cyrene) is a bicyclic, chiral, seven-membered heterocyclic cycloalkanone which is a waste derived and fully biodegradable aprotic dipolar solvent.[4][5][6] It is an environmentally friendly alternative to dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP).[7]

Preparation

[edit]

Dihydrolevoglucosenone can be prepared through the hydrogenation of unsaturated ketone levoglucosenone (LGO) with heterogenous palladium catalysts under mild conditions.[8][9] LGO is a chemical building block obtained by acid-catalyzed pyrolysis[10] of lignocellulosic biomass such as sawdust.

Acidic pyrolysis of cellulose to yield levoglucosenone (LGO)

Properties

[edit]

Dihydrolevoglucosenone is a clear colorless, to light-yellow liquid with a mild, smoky ketone-like odor.[11] It is miscible with water and many organic solvents.[11] Dihydrolevoglucosenone has a boiling point of 226 °C at 101.325 kPa (vs 202 °C for NMP), and a vapor pressure of 12.98 Pa near room temperature (25  °C).[1] It has a comparatively high dynamic viscosity of 14.5 cP (for comparison DMF: 0.92 cP at 20 °C, NMP: 1.67 cP at 25 °C).[12]

The compound is stable at temperatures up to 195 °C and weak acids and bases.[citation needed] Dihydrolevoglucosenone can react with inorganic bases via an aldol condensation mechanism.[citation needed] Dihydrolevoglucosenone is readily biodegradable (99% within 14 days) and reacts to oxidants such as aqueous 30% hydrogen peroxide solution even at room temperature.[citation needed]

Applications

[edit]

Dihydroglucosenone as a precursor

[edit]

Dihydrolevoglucosenone can be used as a renewable building block to produce valuable chemicals such as drugs, flavours and fragrances and specialty polymers.[8]

As dihydrolevoglucosenone is produced as a single enantiomer, it can be used for chiral pool synthesis. For instance, oxidation with peroxy acids such as peroxyacetic acid produces optically pure 5-hydroxymethyldihydrofuranone,[13] from which zalcitabine, formerly a HIV drug, is available.[14]

Formation of 5-hydroxymethyldihydrofuranone [(S) - (+) - 4-hydroxymethyl-γ-butyrolactone]

In a two-step hydrogenation process with a metal catalyst – first at 60 °C then at 180 °C – 1,6-hexanediol is mainly obtained via several intermediates.[15] 1,6-hexanediol can be used as a starting material for the production of polyesters, polyurethanes and diamine 1,6-diaminohexane.

At elevated temperature and in the presence of a palladium catalyst, hydrogenolysis of dihydrolevoglucosenone via levoglucosanol selectively yields tetrahydrofuran-2,5-dimethanol (THF-dimethanol),[8] which is a biodegradable solvent and a bio-based precursor to 1,6-hexanediol (and 1,6-diaminohexane).[16]

Hydrogenation of LGO zu tetrahydrofuran-2,5-dimethanol

Dihydroglucosenone as a safer solvent

[edit]

The search for alternative "green" solvents made from biomass or low-cost renewable raw materials, which are accessible through high-efficiency processes, in high yields, and meet the performance of conventional solvents,[17] has triggered intensive research activities in industry and academia worldwide.

Dihydrolevoglucosenone is considered a "green" replacement for DMF.[5] Several standard reactions of organic chemistry, e.g. Menshutkin reaction,[5] Sonogashira coupling,[18] Suzuki-Miyaura coupling[19] and the production of ureas[20] have been carried out in dihydrolevoglucosenone.

Formation of ureas using dihydrolevoglucosenone as a solvent

Production

[edit]

Circa Group produces dihydrolevoglucosenone from cellulose under the Cyrene brand and has built a 50-tonne demonstration plant with partners in Tasmania. The company estimates that dihydroglucosenone performs better than NMP in 45% and comparably to NMP in 20% of trials to date. Circa received authorization in 2018 from the European Chemicals Agency (ECHA) to produce or import up to 100 tonnes per year of dihydroglucosenone to the EU.[21]

Literature

[edit]
  • DS van Es: Study into alternative (biobased) polar aprotic solvents. Wageningen University, Wageningen 2017 (wur.nl [PDF]).
  • JH Clark, A. Hunt, C. Topi, G. Paggiola, J. Sherwood: Sustainable Solvents: Perspectives from Research, Business and Institutional Policy . Royal Society of Chemistry, London 2017, ISBN 978-1-78262-335-9 .
  • Dickson Kong and Anton V. Dolzhenko. "Cyrene: A Bio-Based Sustainable Solvent for Organic Synthesis." Sustainable Chemistry and Pharmacy 25 (April 1, 2022): 100591. https://doi.org/10.1016/j.scp.2021.100591

References

[edit]
  1. ^ a b c Jeřábek, Vojtěch; Štejfa, Vojtěch; Klajmon, Martin; Řehák, Karel (15 Nov 2023). "Thermodynamic Properties and Phase Equilibria of Dihydrolevoglucosenone and Its Mixtures with Hydrocarbons". Journal of Chemical & Engineering Data. 68 (12): 3361–3376. doi:10.1021/acs.jced.3c00461.
  2. ^ a b c Baird, Zachariah Steven; Uusi-Kyyny, Petri; Pokki, Juha-Pekka; Pedegert, Emilie; Alopaeus, Ville (6 Nov 2019). "Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds". International Journal of Thermophysics. 40 (11): 102. Bibcode:2019IJT....40..102B. doi:10.1007/s10765-019-2570-9.
  3. ^ Circa Group (23 January 2017). "Safety Data Sheet" (PDF). Archived from the original (PDF) on 19 January 2022. Retrieved 3 February 2019.
  4. ^ "Concise and Efficient Synthesis of E-stereoisomers of exo-cyclic Carbohydrate Enones. Aldol Condensation of Dihydrolevoglucosenone with Five-membered Aromatic Aldehydes1 Part 1. - PubAg". pubag.nal.usda.gov. US: United States National Agricultural Library, USA.gov. Retrieved 2019-01-31.
  5. ^ a b c Sherwood, James; De bruyn, Mario; Constantinou, Andri; Moity, Laurianne; McElroy, C. Rob; Farmer, Thomas J.; Duncan, Tony; Raverty, Warwick; Hunt, Andrew J. (2014-09-04). "Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents". Chem. Commun. 50 (68): 9650–9652. doi:10.1039/c4cc04133j. PMID 25007289.
  6. ^ "(1S,5R)-6,8-dioxabicyclo[3.2.1]octan-4-one - Registration Dossier - ECHA". echa.europa.eu. European Chemicals Agency, Europa (web portal). Retrieved 2019-01-31.
  7. ^ Clark, James H.; Hunt, Andrew J.; Raverty, Warwick; Duncan, Tony; Farmer, Thomas J.; McElroy, C. Rob; Moity, Laurianne; Constantinou, Andri; Bruyn, Mario De (2014-07-29). "Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents". Chemical Communications. 50 (68): 9650–9652. doi:10.1039/C4CC04133J. ISSN 1364-548X. PMID 25007289.
  8. ^ a b c Huber, George W.; Dumesic, James A.; Rashke, Quinn A.; McClelland, Daniel J.; Krishna, Siddarth H. (2017-03-06). "Hydrogenation of levoglucosenone to renewable chemicals". Green Chemistry. 19 (5): 1278–1285. doi:10.1039/C6GC03028A. ISSN 1463-9270. OSTI 1477850.
  9. ^ Mazarío, Jaime; Parreño Romero, Míriam; Concepción, Patricia; Chávez-Sifontes, Marvin; Spanevello, Rolando A.; Comba, María B.; Suárez, Alejandra G.; Domine, Marcelo E. (2019-07-26). "Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone". Green Chemistry. 21 (17): 4769–4785. doi:10.1039/C9GC01857C. hdl:11336/108039. ISSN 1463-9270. S2CID 199647263.
  10. ^ Trahanovsky; et al. (December 5, 2002). "A Convenient Procedure for the Preparation of Levoglucosenone and Its Conversion to Novel Chiral Derivatives". Carbohydrate Synthons in Natural Products Chemistry. ACS Symposium Series. Vol. 841. pp. 21–31. doi:10.1021/bk-2003-0841.ch002. ISBN 978-0-8412-3740-7.
  11. ^ a b "Circa Data Sheet" (PDF). Archived (PDF) from the original on 2018-01-09.
  12. ^ Shuttleworth, P. S.; Clark, J. H.; Ellis, G. J.; Budarin, V. L.; Bruyn, M. De; Sherwood, J.; Salavagione, H. J. (2017-06-06). "Identification of high performance solvents for the sustainable processing of graphene" (PDF). Green Chemistry. 19 (11): 2550–2560. doi:10.1039/C7GC00112F. ISSN 1463-9270.
  13. ^ Method of producing (S)-4-hydroxymethyl-γ-lactone, 1990-09-17, retrieved 2019-01-31
  14. ^ Okabe, Masami; Sun, Ruen Chu; Tam, Steve Y. K.; Todaro, Louis J.; Coffen, David L. (2002-05-01). "Synthesis of the dideoxynucleosides "ddC" and "CNT" from glutamic acid, ribonolactone, and pyrimidine bases". The Journal of Organic Chemistry. 53 (20): 4780–4786. doi:10.1021/jo00255a021.
  15. ^ Process for preparing 1,6-hexanediol, 2013-04-25, retrieved 2019-01-31
  16. ^ Huber, George W.; Dumesic, James A.; Hermans, Ive; Maravelias, Christos T.; Banholzer, Williams F.; Walker, Theodore; Burt, Samuel P.; Brentzel, Zachary J.; Alonso, David M. (2017-09-20). "New catalytic strategies for α,ω-diols production from lignocellulosic biomass". Faraday Discussions. 202: 247–267. Bibcode:2017FaDi..202..247H. doi:10.1039/C7FD00036G. ISSN 1364-5498. PMID 28678237. S2CID 39560658.
  17. ^ Byrne, Fergal P.; Jin, Saimeng; Paggiola, Giulia; Petchey, Tabitha H. M.; Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Robert McElroy, C.; Sherwood, James (2016-05-23). "Tools and techniques for solvent selection: green solvent selection guides". Sustainable Chemical Processes. 4 (1): 7. doi:10.1186/s40508-016-0051-z. ISSN 2043-7129.
  18. ^ Watson, Allan J. B.; Jamieson, Craig; Greatrex, Ben; Murray, Jane; Kennedy, Alan R.; Wilson, Kirsty L. (2016-09-08). "Scope and limitations of a DMF bio-alternative within Sonogashira cross-coupling and Cacchi-type annulation". Beilstein Journal of Organic Chemistry. 12 (1): 2005–2011. doi:10.3762/bjoc.12.187. ISSN 1860-5397. PMC 5082449. PMID 27829904.
  19. ^ Watson, Allan J. B.; Jamieson, Craig; Murray, Jane; Wilson, Kirsty L. (2017-12-11). "Cyrene as a Bio-Based Solvent for the Suzuki–Miyaura Cross-Coupling". Synlett. 29 (5): 650–654. doi:10.1055/s-0036-1589143. ISSN 0936-5214.
  20. ^ Camp, Jason E.; Bousfield, Thomas W.; Mapesa, Kopano; Mistry, Liam (2017-05-08). "Synthesis of ureas in the bio-alternative solvent Cyrene" (PDF). Green Chemistry. 19 (9): 2123–2128. doi:10.1039/C7GC00908A. ISSN 1463-9270. S2CID 99613099.
  21. ^ Gyekye, Liz. "Circa gets thumbs up from EU to sell its bio-based solvent in the bloc". www.biobasedworldnews.com. Archived from the original on 2019-01-05. Retrieved 2019-01-31.