Jump to content

3,4-Dihydroxyphenylglycolaldehyde

From Wikipedia, the free encyclopedia
(Redirected from DOPEGAL)
3,4-Dihydroxyphenylglycolaldehyde
Names
IUPAC name
2-(3,4-dihydroxyphenyl)-2-hydroxyacetaldehyde
Other names
DHMAL; 3,4-Dihydroxyphenylglycolaldehyde; 3,4-Dihydroxyphenylglycol aldehyde; DOPEGAL; DOPGAL; DHPGALD; Norepinephrine aldehyde; Epinephrine aldehyde; Noradrenaline aldehyde; Adrenaline aldehyde
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
  • InChI=1S/C8H8O4/c9-4-8(12)5-1-2-6(10)7(11)3-5/h1-4,8,10-12H
    Key: YUGMCLJIWGEKCK-UHFFFAOYSA-N
  • C1=CC(=C(C=C1C(C=O)O)O)O
Properties
C8H8O4
Molar mass 168.148 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

3,4-Dihydroxyphenylglycolaldehyde (DOPEGAL), also known as 3,4-dihydroxymandelaldehyde (DHMAL) as well as norepinephrine aldehyde or epinephrine aldehyde, is a metabolite of the monoamine neurotransmitters norepinephrine and epinephrine. DOPEGAL is a noradrenergic neurotoxin.[1]

Formation

[edit]
Formation of DOPEGAL (norepinephrine aldehyde) from norepinephrine.[2]

DOPEGAL is formed by monoamine oxidase (MAO) via oxidative deamination.[3][4][5][6][7][8] Following its formation, DOPEGAL is metabolized. Through the metabolism process, it is converted into 3,4-dihydroxymandelic acid (DHMA) via aldehyde dehydrogenase (ALDH), or into 3,4-dihydroxyphenylglycol (DHPG) via aldehyde reductase (ALR).[2][4][5][6][7]

See also

[edit]

References

[edit]
  1. ^ Marchitti SA, Deitrich RA, Vasiliou V (June 2007). "Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase". Pharmacol Rev. 59 (2): 125–150. doi:10.1124/pr.59.2.1. PMID 17379813.
  2. ^ a b Figure 11-4 in: Flower, R.; Rang, H. P.; Dale, M. M.; Ritter, J. M. (2007). Rang & Dale's Pharmacology. Edinburgh: Churchill Livingstone. ISBN 978-0-443-06911-6.
  3. ^ "3,4-Dihydroxymandelaldehyde". PubChem. Retrieved 8 September 2024.
  4. ^ a b Goldstein DS (February 2020). "The catecholaldehyde hypothesis: where MAO fits in". J Neural Transm (Vienna). 127 (2): 169–177. doi:10.1007/s00702-019-02106-9. PMC 10680281. PMID 31807952.
  5. ^ a b Tipton KF (November 2018). "90 years of monoamine oxidase: some progress and some confusion". J Neural Transm (Vienna). 125 (11): 1519–1551. doi:10.1007/s00702-018-1881-5. PMID 29637260.
  6. ^ a b Bortolato M, Shih JC (2011). "Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence". Int Rev Neurobiol. International Review of Neurobiology. 100: 13–42. doi:10.1016/B978-0-12-386467-3.00002-9. ISBN 978-0-12-386467-3. PMC 3371272. PMID 21971001.
  7. ^ a b Kawamura M, Eisenhofer G, Kopin IJ, Kador PF, Lee YS, Tsai JY, Fujisawa S, Lizak MJ, Sinz A, Sato S (August 1999). "Aldose reductase, a key enzyme in the oxidative deamination of norepinephrine in rats". Biochem Pharmacol. 58 (3): 517–524. doi:10.1016/s0006-2952(99)00121-5. PMID 10424772.
  8. ^ Kawamura M, Eisenhofer G, Kopin IJ, Kador PF, Lee YS, Fujisawa S, Sato S (March 2002). "Aldose reductase: an aldehyde scavenging enzyme in the intraneuronal metabolism of norepinephrine in human sympathetic ganglia". Auton Neurosci. 96 (2): 131–139. doi:10.1016/s1566-0702(01)00385-x. PMID 11958479.